Статистики на отрезках. Корневая эвристика — различия между версиями
(→Запрос на изменение элемента) |
(→Обработка запроса) |
||
Строка 23: | Строка 23: | ||
== Обработка запроса == | == Обработка запроса == | ||
− | Пусть | + | Пусть получен запрос на выполнение операции на отрезке <tex>[l, r]</tex>. Отрезок может охватить некоторые блоки массива <tex>B</tex> полностью, а так же не более двух блоков (начальный и конечный) {{---}} не полностью. |
Таким образом, для того чтобы найти результат операции на отрезке <tex>[l, r]</tex> необходимо вручную выполнить ее на "хвостах", а потом выполнить ее для полученного результата и полных блоков, значения которых мы посчитали заранее. | Таким образом, для того чтобы найти результат операции на отрезке <tex>[l, r]</tex> необходимо вручную выполнить ее на "хвостах", а потом выполнить ее для полученного результата и полных блоков, значения которых мы посчитали заранее. | ||
Строка 52: | Строка 52: | ||
− | Размер каждого из "хвостов", очевидно, не превосходит длины блока <tex>len</tex>, а количество блоков не превосходит <tex>cnt</tex>. Поскольку и <tex>len</tex>, и <tex>cnt</tex> | + | Размер каждого из "хвостов", очевидно, не превосходит длины блока <tex>len</tex>, а количество блоков не превосходит <tex>cnt</tex>. Поскольку и <tex>len</tex>, и <tex>cnt</tex> выбирано <tex>~ ~ \approx \sqrt{n}</tex>, то для выполнения операции на отрезке <tex>[l, r]</tex> понадобится <tex>O(\sqrt{n})</tex> времени. |
== Запрос на изменение элемента == | == Запрос на изменение элемента == |
Версия 19:53, 8 мая 2015
Корневая эвристика (Sqrt-декомпозиция) — это метод, или структура данных, которая позволяет выполнять ассоциативные операции над отрезками (например, суммирование элементов, нахождение минимума/максимума и т.д.) за
.Построение
Пусть дан массив
размерности . Cделаем следующие действия:- разделим массив на блоки длины ,
- в каждом блоке заранее посчитаем необходимую операцию,
- результаты подсчета запишем в массив размерности , где — количество блоков.
Пример реализации построения массива
build() for i = 0 ... cnt B[i] = neutral // neutral - нейтральный элемент для операцииfor i = 0 ... n - 1 B[i / len] = B[i / len] A[i]
Построение, очевидно, происходит за времени.
Обработка запроса
Пусть получен запрос на выполнение операции на отрезке
. Отрезок может охватить некоторые блоки массива полностью, а так же не более двух блоков (начальный и конечный) — не полностью.Таким образом, для того чтобы найти результат операции на отрезке
необходимо вручную выполнить ее на "хвостах", а потом выполнить ее для полученного результата и полных блоков, значения которых мы посчитали заранее.Пример реализации обработки запроса:
— операция, для которой было сделано построение.
query(l, r) left = l / len right = r / len end = (left + 1) * len - 1 res = neutral //neutral - нейтральный элемент для операцииif left == right for i = l ... r res = res A[i] else for i = l ... end res = res A[i] for i = left + 1 ... right - 1 res = res B[i] for i = right * len ... r res = res A[i]
Размер каждого из "хвостов", очевидно, не превосходит длины блока , а количество блоков не превосходит . Поскольку и , и выбирано , то для выполнения операции на отрезке понадобится времени.
Запрос на изменение элемента
Реализация данного запроса будет зависеть от того, имеет ли операция, для которой сделано построение, обратную операцию и обладает ли она свойством коммутативности.
- если оба условия выполняются, то запрос на изменение элемента можно сделать за времени;
- если хотя бы одно из условий не выполняется, то запрос на изменение элемента можно сделать за времени.
Примеры реализации:
— номер элемента из массива , который необходимо заменить; — новое значение для данного элемента.
Запрос на изменение элемента для операции, у которой есть обратная операция, и выполняется свойство коммутативности:
set(p, newValue) tmp = B[p / len]inverse(A[p]) // inverse(A[p]) - обратный элемент A[p] = newValue B[p / len] = tmp newValue
Запрос на изменение элемента для операции, у которой хотя бы одно из условий не выполняется:
set(p, newValue) index = len * (p / len) A[p] = newValue B[p / len] = neutral // neutral - нейтральный элемент для операцииfor i = index ... index + len - 1 B[p / len] = B[p / len] A[i]