2-3 дерево — различия между версиями
(→Удаление элемента) |
(→Поиск) |
||
Строка 25: | Строка 25: | ||
*у текущей вершины три сына. Если второе значение меньше <tex>x</tex>, то <tex>t = \mathtt{t.sons[2]}</tex>. Если первое значение меньше <tex>x</tex>, то <tex>t = \mathtt{t.sons[1]}</tex>, иначе <tex>t = \mathtt{t.sons[0]}</tex>. | *у текущей вершины три сына. Если второе значение меньше <tex>x</tex>, то <tex>t = \mathtt{t.sons[2]}</tex>. Если первое значение меньше <tex>x</tex>, то <tex>t = \mathtt{t.sons[1]}</tex>, иначе <tex>t = \mathtt{t.sons[0]}</tex>. | ||
− | + | Node search('''T''' x): | |
Node t = root | Node t = root | ||
'''while''' (t не является листом) | '''while''' (t не является листом) |
Версия 20:47, 11 мая 2015
Содержание
Свойства
2-3 дерево — сбалансированное дерево поиска, обладающее следующими свойствами:
- нелистовые вершины имеют либо , либо сына,
- нелистовая вершина, имеющая двух сыновей, хранит максимум левого поддерева. Нелистовая вершина, имеющая трех сыновей, хранит два значения. Первое значение хранит максимум левого поддерева, второе максимум центрального поддерева,
- сыновья упорядочены по значению максимума поддерева сына,
- все листья лежат на одной глубине,
- Высота 2-3 дерева , где — количество элементов в дереве.
Операции
Введем следующие обозначения:
- — корень 2-3 дерева.
Каждый узел дерева обладает полями:
- — родитель узла,
- — сыновья узла,
- — ключи узла,
- — количество сыновей.
Поиск
- — искомое значение,
- — текущая вершина в дереве.
Изначально
. Будем просматривать ключи в узлах, пока узел не является листом. Рассмотрим два случая:- у текущей вершины два сына. Если её значение меньше , то , иначе .
- у текущей вершины три сына. Если второе значение меньше , то . Если первое значение меньше , то , иначе .
Node search(T x): Node t = root while (t не является листом) if (t.length == 2) if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] else if (t.keys[1] < x) t = t.sons[2] else if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] return t
Пример поиска в 2-3 дереве, так как элемент
существует, то был возвращен корректный узел, так как элемента нет, возвращается некорректный узел. На основе этого можно сделать метод , проверяющий наличии элемента в дереве.Вставка элемента
- — добавляемое значение,
- — текущая вершина в дереве. Изначально .
Если корня не существует — дерево пустое, то новый элемент и будет корнем (одновременно и листом). Иначе поступим следующим образом:
Найдем сперва, где бы находился элемент, применив
. Далее проверим есть ли у этого узла родитель, если его нет, то в дереве всего один элемент — лист. Возьмем этот лист и новый узел, и создадим для них родителя, лист и новый узел расположим в порядке возрастания.Если родитель существует, то подвесим к нему ещё одного сына. Если сыновей стало
, то разделим родителя на два узла, и повторим разделение теперь для его родителя (перед разделением обновим ключи).splitParent(Node t): if (t.length > 3) Node a; a.sons[0] = t.sons[2] a.sons[1] = t.sons[3] t.sons[2].parent = a t.sons[3].parent = a a.keys[0] = t.keys[2] a.length = 2 t.length = 2 t.sons[2] = null t.sons[3] = null if (t.parent != null) t.parent[t.length] = a t.length++ сортируем сыновей у t.parent splitParent(t.parent) else //мы расщепили корень, надо подвесить его к общему родителю, который будет новым корнем Node t = root root.sons[0] = t root.sons[1] = a t.parent = root a.parent = root root.length = 2 сортируем сыновей у root
Если сыновей стало
, то ничего не делаем. Далее необходимо восстановить ключи на пути от новой вершины до корня:updateKeys(Node t): Node a = t.parent while (a != null) for i = 0 .. a.length - 1 a.keys[i] = max(a.sons[i]) //max — возвращает максимальное значение в поддереве. a = a.parent //Примечание: max легко находить, если хранить максимум //правого поддерева в каждом узле — это значение и будет max(a.sons[i])
необходимо запускать от нового узла. Добавление элемента:
insert(int x): Node n = Node(x) if (root == null) root = n return Node a = search(x) if (a.parent == null) Node t = root root.sons[0] = t root.sons[1] = n t.parent = root n.parent = root root.length = 2 сортируем сыновей у root else Node p = a.parent p.sons[p.length] = n p.length++ n.parent = p сортируем сыновей у p updateKeys(n) split(n) updateKeys(n)
Так как мы спускаемся один раз, и поднимаемся вверх при расщеплении родителей не более одного раза, то
работает за .Примеры добавления:
Удаление элемента
- — значение удаляемого узла,
- — текущий узел.
- — любой брат .
Пусть изначально
— узел, где находится .Если у
не существует родителя, то это корень. Удалим его.Если у
существует родитель, и у него строго больше сыновей, то просто удалим , а у уменьшим количество детей.Если у родителя
сына, то найдем у любого соседнего листа его родителя, обозначим его за . Обозначим отца соседнего листа за .Рассмотрим возможные случаи:- не существует, тогда мы удаляем одного из сыновей корня, тогда другой сын становится новым корнем,
- у оказалось сына, у оказалось 2 сына. Подвесим к и удалим , но у отца не изменим количество детей. Так у отца оказалось тоже два сына,повторяем для него такие же рассуждения.
- у оказалось сына, у оказалось 2 сына. Подвесим к и удалим , а у отца уменьшим количество детей. Так как у оказалось четыре сына, то необходимо его расщепить. Теперь у отца оказалось два сына и все узлы 2-3 дерева корректны.
- у оказалось сына, у оказалось 2 сына. Подвесим к и удалим , а у отца уменьшим количество детей. Так как у оказалось три сына, а у отца все ещё больше одного сына, то все узлы 2-3 дерева корректны.
- у оказалось сына, у оказалось 3 сына. Подвесим к и удалим , а у отца уменьшим количество детей. Так как у оказалось четыре сына, то расщепим его, теперь у отца вновь три сына и все узлы 2-3 дерева корректны.
Обобщим алгоритм при удалении когда у родителя два сына(ниже мы никогда не уменьшаем количество детей у ):
- Если p не существует, то оказывается, что мы сейчас удаляем какого-то из сыновей корня (для определенности далее левого, с правым аналогично). Тогда теперь правый сын становится корнем. На этом удаление заканчивается.
- Если p существует, то удалим , а его брата ( ) перецепим к . Теперь у могло оказаться сына, поэтому повторим аналогичные действия из : вызовем и . Теперь рекурсивно удалим .
В результате мы получаем корректное по структуре 2-3 дерево, но у нас есть нарушение в ключах в узлах, исправим их с помощью
, запустившись от .Следующий и предыдущий
- — поисковый параметр,
- — текущий узел.
В силу того, что наши узлы отсортированы по максимуму в поддереве, то следующий объект это соседний лист справа. Попасть туда можно следующим образом: будем подниматься вверх, пока у нас не появится первой возможности свернуть направо вниз. Как только мы свернули направо вниз, будем идти всегда влево. Таким образом, мы окажемся в соседнем листе. Если мы не смогли ни разу свернуть направо вниз, и пришли в корень, то следующего объекта не существует. Случай с предыдущим симметричен.
Node next(int x) Node t = search(x) if (t.keys[0] > x) //x не было в дереве, и мы нашли следующий сразу return t while (t != null) t = t.parent if (можно свернуть направо вниз) в t помещаем вершину, в которую свернули while (пока t — не лист) t = t.sons[0] return t return t;
Нахождение m следующих элементов
B+ деревья, поддерживают операцию
, которая позволяет находить m следующих элементов. Наивная реализация выглядит следующим образом: будем вызывать раз поиск следующего элемента, такое решение работает за . Но 2-3 деревья, позволяют находить m следующих элементов за , что значительно ускоряет поиск при больших . По построению, все листья у нас отсортированы в порядке возрастания, воспользуемся этим для нахождения m элементов. Нам необходимо связать листья, для этого модифицируем и . Добавим к узлам следующие поля:- — указывает на правый лист,
- — указывает на левый лист.
Пусть
— добавленный узел. Изменим следующим образом: в самом конце, после того как мы уже обновили все ключи, найдем и запишем ссылку на него в . Аналогично с левым.Пусть
— удаляемый узел. Изменим следующим образом: в самом начале, до удаления , найдем следующий и запишем в правый лист относительно . С левым поступим аналогично.В итоге, мы имеем двусвязный список в листьях, и чтобы нам вывести
элементов, нам достаточно один раз найти нужный элемент и пробежаться вправо на элементов.
См. также
Источники информации
- is.ifmo.ru — Визуализатор 2-3 дерева
- rain.ifmo.ru — Визуализатор 2-3 дерева
- Википедия — 2-3 дерево
- Д. Кнут «Искусство программирования. Сортировка и поиск» — стр. 508 - 509