34
правки
Изменения
Отступы и форматирование
|proof= Подмножество <tex>I \subseteq 2^X</tex> назовем <tex>r</tex>-независимым, если выполняется <tex>r(I) = |I|</tex>. Обозначим через <tex>\mathcal{I}</tex> множество всех <tex>r</tex>-независимых подмножеств из <tex>2^X</tex>. Докажем, что <tex>\mathcal{I}</tex> удовлетворяет аксиомам независимого множества 1, 2 и 3:<br>
{{Лемма
|statement=Пусть <tex> B \subset A \subseteq 2^X</tex>, <tex>r(B) = |B|</tex>, и <tex> A \setminus B = \{p_1, ... p_t\}</tex>. Если <tex>r(B \cup p_i) = |B|</tex> для любого <tex> i = 1,..., t</tex>, то <tex>r(A) = |B|</tex>
|proof=:По индукции: предположим, что <tex>r(B \cup p_1 \cup ... \cup p_j) = |B|</tex> для некоторого <tex>j = 1,...,t-1</tex>. Тогда, применяя (r.2) и (r.3), получаем: <br>:<tex>|B| = r(B) \le r(B \cup p_1 \cup ... \cup p_j+1) \le r(B \cup p_1 \cup ... \cup p_j) + r(B \cup p_j+1) -r(B) = |B| + |B| - |B| = |B| </tex>. <br>:Следовательно, <tex>r(B \cup p_1 \cup ... \cup p_j+1) = |B|</tex>. Переход доказан, а значит, <tex>r(B \cup p_1 \cup ... \cup p_t) = |B|</tex>. <br>
}}