Обсуждение участницы:Анна — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм разделения АВЛ-дерева на два, где в первом дереве все ключи меньше заданного x, а во втором - больше)
Строка 13: Строка 13:
 
Рассмотри пример (рис. 1). Цветом выделены поддеревья, которые после разделения должны отойти в дерево <tex>T_{1}</tex>. <tex>x = 76</tex>.
 
Рассмотри пример (рис. 1). Цветом выделены поддеревья, которые после разделения должны отойти в дерево <tex>T_{1}</tex>. <tex>x = 76</tex>.
  
Корень дерева <tex>\leqslant x</tex>, поэтому он со всем выделенным поддеревом должен отойти в дерево <tex>T_{1}</tex>. По описанному выше алгоритму отделяем это поддерево с корнем и делаем из них сбалансированное АВЛ-дерево <tex>tmpT</tex> (рис. 2). Так как это первая ситуация, в которой корень рассматриваемого поддерева был <tex>\leqslant x</tex>, <tex>tmpT</tex> становится <tex>T_{1}</tex>. Далее по сохраненной ссылке спускаемся в правое поддерево. Его корень <tex>> x</tex>. Следовательно, строим из него и его правого поддерева <tex>T_{2}</tex> и спускаемся в левое поддерево. Снова корень <tex>\leqslant x</tex>.
+
Корень дерева <tex>\leqslant x</tex>, поэтому он со всем выделенным поддеревом должен отойти в дерево <tex>T_{1}</tex>. По описанному выше алгоритму отделяем это поддерево с корнем и делаем из них сбалансированное АВЛ-дерево <tex>tmpT</tex> (рис. 2). Так как это первая ситуация, в которой корень рассматриваемого поддерева был <tex>\leqslant x</tex>, <tex>tmpT</tex> становится <tex>T_{1}</tex>. Далее по сохраненной ссылке спускаемся в правое поддерево. Его корень <tex>> x</tex>. Следовательно, строим из него и его правого поддерева <tex>T_{2}</tex> и спускаемся в левое поддерево. Снова корень <tex>\leqslant x</tex>. Строим новое <tex>tmpT</tex> и объединяем его с уже существующим <tex>T_{1}</tex> (рис. 3).
 +
[[Файл:AVL3.jpg|500px|thumb|left|Рис. 3. Объединение tmpT и T1.]]

Версия 19:20, 19 мая 2015

Алгоритм разделения АВЛ-дерева на два, где в первом дереве все ключи меньше заданного x, а во втором - больше

Пусть у нас есть дерево [math]T[/math]. Мы должны разбить его на два дерева [math]T_{1}[/math] и [math]T_{2}[/math] такие, что [math]T_{1} \leqslant x[/math] и [math]x \lt T_{2}[/math].

Предположим, что корень нашего дерева [math]\leqslant x[/math], в таком случае все левое поддерево вместе с корнем после разделения отойдет в дерево [math]T_{1}[/math]. Тогда рекурсивно спускаемся в правое поддерево и там проверяем это условие (так как часть правого поддерева тоже может содержать ключи [math]\leqslant x[/math]). Если же корень оказался [math]\gt x[/math], то мы спускаемся той же рекурсией, но только в левое поддерево и ищем там.

Рис. 1. Разделение АВЛ-дерева на два.

Пусть мы пришли в поддерево [math]S[/math], корень которого [math]\leqslant x[/math]. В таком случае этот корень со своим левым поддеревом должен отойти в дерево [math]T_{1}[/math]. Поэтому мы делаем следующее: запоминаем ссылку на правое поддерево [math]S[/math], удаляем корень, запоминая его значение (не меняя конфигурацию дерева, то есть просто делаем ссылки на него NULL'ами). Таким образом, мы отделяем сбалансированное АВЛ-дерево (бывшее левое поддерево [math]S[/math]). Делаем новую вершину со значением бывшего корня правым листом самой правой вершины [math]S[/math] и запускаем балансировку. Обозначим полученное дерево за [math]tmpT[/math]. Теперь нам нужно объединить его с уже построенным ранее [math]T_{1}[/math] (оно может быть пустым, если мы первый раз нашли такое дерево [math]S[/math]). Для этого мы ищем в дереве [math]T_{1}[/math] самое правое поддерево [math]P[/math] высоты, равной высоте [math]tmpT[/math] (спускаясь от корня всегда в правые поддеревья). Делаем новое дерево [math]K[/math], сливая [math]P[/math] и [math]tmpT[/math] (очевидно, все ключи в [math]T_{1}[/math] меньше ключей в [math]tmpT[/math], поэтому мы можем это сделать). Теперь в дереве [math]T_{1}[/math] у отца вершины, в которой мы остановились при поиске дерева [math]P[/math], правым поддеревом делаем дерево [math]K[/math] и запускаем балансировку. После нужно спуститься в правое поддерево бывшего дерева [math]S[/math] (по ссылке, которую мы ранее запомнили) и обработать его.

Если мы пришли в поддерево [math]Q[/math], корень которого [math]\gt x[/math], совершаем аналогичные действия: делаем NULL'ами ссылки на корень [math]Q[/math], запоминая ссылку на его левое поддерево. Делаем новую вершину со значением бывшего корня левым листом самой левой вершины [math]Q[/math] и запускаем балансировку. Объединяем полученное АВЛ-дерево с уже построенным ранее [math]T_{2}[/math] аналогичным первому случаю способом, только теперь мы ищем самое левое поддерево [math]T_{2}[/math].

Рис. 2. Создание tmpT.

Рассмотри пример (рис. 1). Цветом выделены поддеревья, которые после разделения должны отойти в дерево [math]T_{1}[/math]. [math]x = 76[/math].

Корень дерева [math]\leqslant x[/math], поэтому он со всем выделенным поддеревом должен отойти в дерево [math]T_{1}[/math]. По описанному выше алгоритму отделяем это поддерево с корнем и делаем из них сбалансированное АВЛ-дерево [math]tmpT[/math] (рис. 2). Так как это первая ситуация, в которой корень рассматриваемого поддерева был [math]\leqslant x[/math], [math]tmpT[/math] становится [math]T_{1}[/math]. Далее по сохраненной ссылке спускаемся в правое поддерево. Его корень [math]\gt x[/math]. Следовательно, строим из него и его правого поддерева [math]T_{2}[/math] и спускаемся в левое поддерево. Снова корень [math]\leqslant x[/math]. Строим новое [math]tmpT[/math] и объединяем его с уже существующим [math]T_{1}[/math] (рис. 3).

Рис. 3. Объединение tmpT и T1.