Двойственный матроид — различия между версиями
м (Приведено в соответствие с коррективами куратора.) |
|||
Строка 47: | Строка 47: | ||
:* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является тривиальным, если <tex>\mathcal{I} = \varnothing </tex>. | :* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является тривиальным, если <tex>\mathcal{I} = \varnothing </tex>. | ||
:* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является полным, если <tex>\mathcal{I} = 2^X</tex>. | :* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является полным, если <tex>\mathcal{I} = 2^X</tex>. | ||
− | :Они, очевидно, представимы над телом <tex>F</tex> нулевой и единичной матрицей соответственно. | + | :Они, очевидно, представимы над телом <tex>F</tex> нулевой и единичной матрицей соответственно. |
− | : Пусть теперь <tex>M</tex> {{---}} произвольный нетривиальный и не полный матричный матроид. Тогда <tex>M</tex> изоморфен матроиду столбцов некоторой <tex>(t \times m)</tex>-матрицы <tex>P</tex> над телом <tex>F</tex>. Т.к. матроид нетривиален и не полный, то <tex>rg(P) = r</tex> и <tex>0 < r < m </tex>. | + | : Пусть теперь <tex>M</tex> {{---}} произвольный нетривиальный и не полный матричный матроид. Тогда <tex>M</tex> изоморфен матроиду столбцов некоторой <tex>(t \times m)</tex>-матрицы <tex>P</tex> над телом <tex>F</tex>. Т.к. матроид нетривиален и не полный, то <tex>rg(P) = r</tex> и <tex>0 < r < m </tex>. |
− | : Рассмотрим следующую однородную систему уравнений над пространством векторов-столбцов <tex>F^m</tex>: | + | : Рассмотрим следующую однородную систему уравнений над пространством векторов-столбцов <tex>F^m</tex>: |
− | :: <tex>(1): PX=0</tex>. | + | :: <tex>(1): PX=0</tex>. |
− | : Для задания базиса ФСР этой системы нам [[wikipedia:ru:Решение систем линейных алгебраических уравнений|достаточно]] <tex>m - r</tex> линейно независимых векторов. Пусть | + | : Для задания базиса ФСР этой системы нам [[wikipedia:ru:Решение систем линейных алгебраических уравнений|достаточно]] <tex>m - r</tex> линейно независимых векторов. Пусть |
− | :: <tex>(2): X_1, X_2,\ldots, X_{m-r}</tex | + | :: <tex>(2): X_1, X_2,\ldots, X_{m-r}</tex> |
− | :{{---}} базис пространства решений системы (1). Составим из этих столбцов <tex>(m \times (m - r))</tex>-матрицу <tex>Q=(X_1, X_2, \ldots, X_{m-r})</tex>. Покажем, что матроид <tex>M^*</tex> изоморфен матроиду строк матрицы <tex>Q</tex> над телом <tex>F</tex>. Для этого нам достаточно установить, что система каких-либо <tex>r</tex> столбцов матрицы <tex>P</tex> линейно независима тогда и только тогда, когда линейно независима дополняющая ее система <tex>m - r</tex> строк матрицы <tex>Q</tex>. Дополняющая система строк {{---}} это система строк, номера которых дополняют номера столбцов исходной системы столбцов до множества <tex>\{1,\ldots, m\}</tex>. | + | :{{---}} базис пространства решений системы (1). Составим из этих столбцов <tex>(m \times (m - r))</tex>-матрицу <tex>Q=(X_1, X_2, \ldots, X_{m-r})</tex>. Покажем, что матроид <tex>M^*</tex> изоморфен матроиду строк матрицы <tex>Q</tex> над телом <tex>F</tex>. Для этого нам достаточно установить, что система каких-либо <tex>r</tex> столбцов матрицы <tex>P</tex> линейно независима тогда и только тогда, когда линейно независима дополняющая ее система <tex>m - r</tex> строк матрицы <tex>Q</tex>. Дополняющая система строк {{---}} это система строк, номера которых дополняют номера столбцов исходной системы столбцов до множества <tex>\{1,\ldots, m\}</tex>. |
− | :Возьмем произвольную систему из r cстолбцов матрицы <tex>P</tex>. Для простоты обозначений будем считать, что взяты первые<tex>r</tex> столбцов (мы всегда можем переставить столбцы матрицы местами, не поменяв характера их линейной зависимости). Пусть <tex>P_1(t\times r)</tex> {{---}} подматрица матрицы <tex>P</tex>, составленная из взятых первых <tex>r</tex> столбцов. Рассмотрим однородную систему линейных уравнений над пространством векторов-столбцов <tex>F^r</tex>: | + | :Возьмем произвольную систему из r cстолбцов матрицы <tex>P</tex>. Для простоты обозначений будем считать, что взяты первые<tex>r</tex> столбцов (мы всегда можем переставить столбцы матрицы местами, не поменяв характера их линейной зависимости). Пусть <tex>P_1(t\times r)</tex> {{---}} подматрица матрицы <tex>P</tex>, составленная из взятых первых <tex>r</tex> столбцов. Рассмотрим однородную систему линейных уравнений над пространством векторов-столбцов <tex>F^r</tex>: |
− | ::<tex>(3): P_1Y=0</tex | + | ::<tex>(3): P_1Y=0</tex> |
− | : Пусть столбцы матрицы <tex>P_1</tex> линейно зависимы. Тогда система (3) имеет ненулевое решение <tex>Y</tex>. Добавим к нему снизу <tex>m - r</tex> нулей, получим ненулевое решение <tex>X</tex> системы (1). Выразим <tex>X</tex> через базис (2) пространства решений системы (1): | + | : Пусть столбцы матрицы <tex>P_1</tex> линейно зависимы. Тогда система (3) имеет ненулевое решение <tex>Y</tex>. Добавим к нему снизу <tex>m - r</tex> нулей, получим ненулевое решение <tex>X</tex> системы (1). Выразим <tex>X</tex> через базис (2) пространства решений системы (1): |
− | ::<tex>(4): X=\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_{m-r} X_{m-r}</tex | + | ::<tex>(4): X=\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_{m-r} X_{m-r}</tex> |
− | : где среди коэффициентов есть хотя бы один ненулевой элемент из <tex>F</tex>. Введем в рассмотрение столбцы | + | : где среди коэффициентов есть хотя бы один ненулевой элемент из <tex>F</tex>. Введем в рассмотрение столбцы |
− | ::<tex>(5): X'_1, X'_2, \ldots, X'_{m-r}</tex | + | ::<tex>(5): X'_1, X'_2, \ldots, X'_{m-r}</tex> |
− | : из пространства <tex>F^{m-r}</tex>, полученные соответственно из столбцов <tex>X_1, X_2, \ldots, X_{m-r}</tex> отбрасыванием первых <tex>r</tex> компонент. Составим из этих "урезанных" столбцов <tex> ((m - r) \times (m - r))</tex>-матрицу <tex>Q_1 = (X'_1, X'_2, \ldots, X'_{m-r})</tex>. Матрица <tex>Q_1</tex> {{---}} это квадратная матрица порядка <tex>m-r</tex>, которая является подматрицей матрицы <tex>Q</tex> и расположена внизу матрицы <tex>Q</tex>. Из равенства (4) следует, что | + | : из пространства <tex>F^{m-r}</tex>, полученные соответственно из столбцов <tex>X_1, X_2, \ldots, X_{m-r}</tex> отбрасыванием первых <tex>r</tex> компонент. Составим из этих "урезанных" столбцов <tex> ((m - r) \times (m - r))</tex>-матрицу <tex>Q_1 = (X'_1, X'_2, \ldots, X'_{m-r})</tex>. Матрица <tex>Q_1</tex> {{---}} это квадратная матрица порядка <tex>m-r</tex>, которая является подматрицей матрицы <tex>Q</tex> и расположена внизу матрицы <tex>Q</tex>. Из равенства (4) следует, что |
− | :: <tex>(6): 0=\alpha_1 X'_1 + \alpha_2 X'_2 + \ldots + \alpha_{m-r} X'_{m-r}</tex | + | :: <tex>(6): 0=\alpha_1 X'_1 + \alpha_2 X'_2 + \ldots + \alpha_{m-r} X'_{m-r}</tex> |
− | : т.е. система столбцов квадратной матрицы <tex>Q_1</tex> линейно зависима. Тогда линейно зависима и система строк этой матрицы, т.е. линейно зависима система из <tex>m - r</tex> последних строк матрицы <tex>Q</tex>. Что и требовалось доказать. | + | : т.е. система столбцов квадратной матрицы <tex>Q_1</tex> линейно зависима. Тогда линейно зависима и система строк этой матрицы, т.е. линейно зависима система из <tex>m - r</tex> последних строк матрицы <tex>Q</tex>. Что и требовалось доказать. |
:Теперь докажем в обратную сторону. Пусть система каких-либо <tex>m - r</tex> строк матрицы <tex>Q</tex> линейно зависима. Для простоты обозначений будем считать, что эта система состоит из последних <tex> m - r </tex> строк матрицы <tex>Q</tex>. Тогда линейно зависима система (5) "урезанных" столбцов, составляющих матрицу <tex>Q_1</tex>. Следовательно, некоторая нетривиальная линейная комбинация (6) "урезанных" столбцов равна 0. С помощью равенства (4) определим столбец <tex>X</tex>. Поскольку система столбцов (2) линейно независима, имеем <tex>X \ne 0</tex>. Столбец Х является решением системы (1), так как он равен линейной комбинации базиса пространства решений этой системы. Тогда столбец <tex>Y</tex>, полученный из столбца <tex>x</tex> отбрасыванием последних m - r нулевых компонент, является ненулевым решением системы (3). Следовательно, линейно зависима система из первых <tex>r</tex> столбцов матрицы <tex>P_1</tex>, что и требовалось доказать. | :Теперь докажем в обратную сторону. Пусть система каких-либо <tex>m - r</tex> строк матрицы <tex>Q</tex> линейно зависима. Для простоты обозначений будем считать, что эта система состоит из последних <tex> m - r </tex> строк матрицы <tex>Q</tex>. Тогда линейно зависима система (5) "урезанных" столбцов, составляющих матрицу <tex>Q_1</tex>. Следовательно, некоторая нетривиальная линейная комбинация (6) "урезанных" столбцов равна 0. С помощью равенства (4) определим столбец <tex>X</tex>. Поскольку система столбцов (2) линейно независима, имеем <tex>X \ne 0</tex>. Столбец Х является решением системы (1), так как он равен линейной комбинации базиса пространства решений этой системы. Тогда столбец <tex>Y</tex>, полученный из столбца <tex>x</tex> отбрасыванием последних m - r нулевых компонент, является ненулевым решением системы (3). Следовательно, линейно зависима система из первых <tex>r</tex> столбцов матрицы <tex>P_1</tex>, что и требовалось доказать. | ||
Строка 75: | Строка 75: | ||
* [[wikipedia:en:Dual matroid | Wikipedia {{---}} Dual matroid]] | * [[wikipedia:en:Dual matroid | Wikipedia {{---}} Dual matroid]] | ||
* ''Michel X. Goemans'' {{---}} Advanced Combinatorial Optimization, lection 8: Mathroids. | * ''Michel X. Goemans'' {{---}} Advanced Combinatorial Optimization, lection 8: Mathroids. | ||
− | * ''Асанов М. О., Баранский В. А., Расин В. В.'' {{---}} Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2''' | + | * ''Асанов М. О., Баранский В. А., Расин В. В.'' {{---}} Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2''' |
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Матроиды]] | [[Категория:Матроиды]] | ||
[[Категория:Основные факты теории матроидов]] | [[Категория:Основные факты теории матроидов]] |
Версия 21:25, 19 мая 2015
Определение: |
Двойственный матроид (англ. dual matroid) к матроид , где — множество всех кобаз матроида | — это
Определение: |
Двойственный матроид к | — это матроид , где
Теорема: |
Множество аксиомам баз. удовлетворяет |
Доказательство: |
|
Теорема: |
Матроиды и совпадают. |
Доказательство: |
Требуется доказать:
|
Теорема: |
Матроид, двойственный к матричному над телом , так же является матричным над телом |
Доказательство: |
|
См.также
Источники информации
- Википедия — Двойственный матроид
- Wikipedia — Dual matroid
- Michel X. Goemans — Advanced Combinatorial Optimization, lection 8: Mathroids.
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2