Двойственный матроид — различия между версиями
м |
м |
||
Строка 68: | Строка 68: | ||
:<tex>\Longleftarrow</tex> | :<tex>\Longleftarrow</tex> | ||
− | ::Теперь докажем в обратную сторону. Пусть система каких-либо <tex>m - r</tex> строк матрицы <tex>Q</tex> линейно зависима. Для простоты обозначений будем считать, что эта система состоит из последних <tex> m - r </tex> строк матрицы <tex>Q</tex>. Тогда линейно зависима система (5) "урезанных" столбцов, составляющих матрицу <tex>Q_1</tex>. Следовательно, некоторая нетривиальная линейная комбинация (6) "урезанных" столбцов равна <tex>0</tex>. С помощью равенства (4) определим столбец <tex>X</tex>. Поскольку система столбцов (2) линейно независима, имеем <tex>X \ne 0</tex>. Столбец Х является решением системы (1), так как он равен линейной комбинации базиса пространства решений этой системы. Тогда столбец <tex>Y</tex>, полученный из столбца <tex>x</tex> отбрасыванием последних <tex>m - r | + | ::Теперь докажем в обратную сторону. Пусть система каких-либо <tex>m - r</tex> строк матрицы <tex>Q</tex> линейно зависима. Для простоты обозначений будем считать, что эта система состоит из последних <tex> m - r </tex> строк матрицы <tex>Q</tex>. Тогда линейно зависима система (5) "урезанных" столбцов, составляющих матрицу <tex>Q_1</tex>. Следовательно, некоторая нетривиальная линейная комбинация (6) "урезанных" столбцов равна <tex>0</tex>. С помощью равенства (4) определим столбец <tex>X</tex>. Поскольку система столбцов (2) линейно независима, имеем <tex>X \ne 0</tex>. Столбец Х является решением системы (1), так как он равен линейной комбинации базиса пространства решений этой системы. Тогда столбец <tex>Y</tex>, полученный из столбца <tex>x</tex> отбрасыванием последних <tex>m - r</tex> нулевых компонент, является ненулевым решением системы (3). Следовательно, линейно зависима система из первых <tex>r</tex> столбцов матрицы <tex>P_1</tex>, что и требовалось доказать. |
}} | }} | ||
Версия 14:06, 21 мая 2015
Определение: |
Двойственный матроид (англ. dual matroid) к матроид , где — множество всех кобаз матроида | — это
Определение: |
Двойственный матроид к | — это матроид , где
Теорема: |
Множество аксиомам баз. удовлетворяет |
Доказательство: |
|
Теорема: |
Матроиды и совпадают. |
Доказательство: |
Требуется доказать:
|
Теорема: |
Матроид, двойственный к матричному над телом , так же является матричным над телом |
Доказательство: |
|
См.также
Примечания
Источники информации
- Википедия — Двойственный матроид
- Wikipedia — Dual matroid
- Michel X. Goemans — Advanced Combinatorial Optimization, lection 8: Mathroids.
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2