NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ — различия между версиями
(→Доказательство принадлежности 3SAT классу NPH) |
(→Доказательство принадлежности 3SAT классу NPH) |
||
Строка 25: | Строка 25: | ||
* <tex>(x \vee y)</tex> заменим на <tex>(x \vee y \vee z) \wedge (x \vee y \vee \neg z)</tex>. Ясно, что последняя формула выполнима тогда и только тогда, когда выполнима исходная, при любых <tex>z</tex>; | * <tex>(x \vee y)</tex> заменим на <tex>(x \vee y \vee z) \wedge (x \vee y \vee \neg z)</tex>. Ясно, что последняя формула выполнима тогда и только тогда, когда выполнима исходная, при любых <tex>z</tex>; | ||
* <tex>(x)</tex> заменим на <tex>(x \vee y) \wedge (x \vee \neg y)</tex> - свели задачу к предыдущей; | * <tex>(x)</tex> заменим на <tex>(x \vee y) \wedge (x \vee \neg y)</tex> - свели задачу к предыдущей; | ||
− | * Если встречается | + | * Если встречается дизъюнкт вида <tex>(x_1 \ldots x_k), k \ge 3</tex>, введем <tex>k-3</tex> новых переменных и заменим наш дизъюнкт на <tex>k-2</tex> дизъюнкта: <tex>(x_1 \vee x_2 \vee z_1) \wedge (x_3 \vee \neg z_1 \vee z_2) \wedge (x_4 \vee \neg z_2 \vee z_3) \wedge \ldots \wedge (x_{k-1} \vee x_k \vee \neg z_{k-3})</tex> |
Таким образом, мы свели <tex>CNFSAT</tex> к <tex>3SAT</TEX>, следовательно <tex>3SAT \in NPH</tex>. Теорема доказана. | Таким образом, мы свели <tex>CNFSAT</tex> к <tex>3SAT</TEX>, следовательно <tex>3SAT \in NPH</tex>. Теорема доказана. |
Версия 14:24, 19 марта 2010
Содержание
Задача
в 3-КНФ,
Теорема
Доказательство
Для того, чтобы доказать NP-полноту задачи, необходимо установить следующие факты:
- .
- ;
Доказательство принадлежности 3SAT классу NP
Возьмем в качестве сертификата набор
, где . Верификатор подставляет в формулу и проверяет её на равенство единице. Время работы верификатора и длина сертификата, очевидно, полиномиальны. Итак, .Доказательство принадлежности 3SAT классу NPH
Покажем, что сводится по Куку к .
, то естьРассмотрим один дизъюнкт булевой формулы в форме 3-КНФ. Он должен иметь вид . Научимся приводить члены вида , , к нужному виду.
- заменим на . Ясно, что последняя формула выполнима тогда и только тогда, когда выполнима исходная, при любых ;
- заменим на - свели задачу к предыдущей;
- Если встречается дизъюнкт вида , введем новых переменных и заменим наш дизъюнкт на дизъюнкта:
Таким образом, мы свели
к , следовательно . Теорема доказана.