Формула включения-исключения — различия между версиями
(→Теорема) |
(→Доказательство) |
||
| Строка 45: | Строка 45: | ||
<center> | <center> | ||
| − | <math> | A | = | A_n| + \Bigg( \sum_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap_{ j \in I } A_j \Big| \Bigg) - \Bigg( \sum_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap_{ j\in I \cup \{ n \} } A_j \Big| \Bigg) = \sum_{I \subset \{ 1,2, \ldots ,n \} } (-1)^{ | + | <math> | A | = | A_n| + \Bigg( \sum_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap_{ j \in I } A_j \Big| \Bigg) - \Bigg( \sum_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap_{ j\in I \cup \{ n \} } A_j \Big| \Bigg) = \sum_{I \subset \{ 1,2, \ldots ,n \} } (-1)^{|I|+1} \Big| \bigcap_{ j \in I } A_j \Big| </math> |
</center> | </center> | ||
Версия 02:18, 8 ноября 2010
Формула включения-исключения
Формула включения-исключения - это комбинаторная формула, которая позволяет определить мощность объединения конечных множеств, если известны их мощности и мощности всех их возможных пересечений.
Например, в случае двух множеств формула включения-исключения имеет вид:
В сумме элементы пересечения учтены дважды, и чтобы компенсировать это мы вычитаем из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера-Венна для двух множеств, приведенной на рисунке справа.
Таким же образом и в случае множеств процесс нахождения количества элементов объединения состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы.
Теорема
Пусть , тогда по формуле включения-исключения:
Доказательство
Для случая и теорема, очевидно, верна.
Теперь рассмотрим :
Таким образом:
