Построение суффиксного массива с помощью стандартных методов сортировки — различия между версиями
AKhimulya (обсуждение | вклад) (→Литература) |
AKhimulya (обсуждение | вклад) м (→Алгоритм, использующий префиксы циклических сдвигов) |
||
Строка 60: | Строка 60: | ||
Рассмотрим теперь переход от префиксов длины <tex>l</tex> к префиксам длины <tex>2l</tex>. Научимся сравнивать два префикса длины <tex>2l</tex> за <tex>O(1)</tex>: Пусть даны префиксы <tex>s[i..i+2l-1]</tex>, <tex>s[j..j+2l-1]</tex>, сравним сначала их левые половинки, использовав значения <tex>c[i], c[j]</tex> с предыдущего шага, если <tex>c[i]\neq c[j]</tex>, то префиксы соотносятся так как же, как <tex>c[i]</tex> и <tex> c[j]</tex>, если <tex>c[i]=c[j]</tex>, то переходим к сравнению <tex>c[i+l]</tex> и <tex> c[j+l]</tex>. Итак, отсортировать префиксы длины <tex>2l</tex> можно за <tex>O(n\log n)</tex>. Вычислить новые <tex>c[i]</tex> можно просто пробежавшись в лексикографическом порядке по префиксам, и увеличивая номер соответствующего класса на <tex>1</tex>, если текущий префикс не совпадает с предыдущим (сравнивать с помощью старых <tex>c[i], c[i+l]</tex>). | Рассмотрим теперь переход от префиксов длины <tex>l</tex> к префиксам длины <tex>2l</tex>. Научимся сравнивать два префикса длины <tex>2l</tex> за <tex>O(1)</tex>: Пусть даны префиксы <tex>s[i..i+2l-1]</tex>, <tex>s[j..j+2l-1]</tex>, сравним сначала их левые половинки, использовав значения <tex>c[i], c[j]</tex> с предыдущего шага, если <tex>c[i]\neq c[j]</tex>, то префиксы соотносятся так как же, как <tex>c[i]</tex> и <tex> c[j]</tex>, если <tex>c[i]=c[j]</tex>, то переходим к сравнению <tex>c[i+l]</tex> и <tex> c[j+l]</tex>. Итак, отсортировать префиксы длины <tex>2l</tex> можно за <tex>O(n\log n)</tex>. Вычислить новые <tex>c[i]</tex> можно просто пробежавшись в лексикографическом порядке по префиксам, и увеличивая номер соответствующего класса на <tex>1</tex>, если текущий префикс не совпадает с предыдущим (сравнивать с помощью старых <tex>c[i], c[i+l]</tex>). | ||
− | После шага <tex>l =2^{\lceil \log_2 n\rceil} \ | + | После шага <tex>l =2^{\lceil \log_2 n\rceil} \geqslant n</tex> все циклические сдвиги будут отсортированы. Всего шагов <tex>O(\log n)</tex>, каждый шаг проводится за <tex>O(n \log n)</tex>, итоговая асимптотика <tex>O(n \log^2 n)</tex>. |
=== Псевдокод === | === Псевдокод === |
Версия 12:16, 31 мая 2015
Содержание
Идея построения суффиксного массива
Согласно определению суффиксного массива, для его построения достаточно отсортировать все суффиксы строки. Заменим сортировку суффиксов строки на сортировку циклических сдвигов строки , где символ строго меньше любого символа из . Тогда если в упорядоченных циклических сдвигах отбросить суффикс, начинающийся на , то получатся упорядоченные суффиксы исходной строки . В дальнейшем положим (заметим, что все циклические сдвиги также имеют длину ), а также .
Наивный алгоритм
Данный алгоритм достаточно тривиален. Отсортируем все циклические сдвиги строки
, воспользовавшись любым известным методом логарифмической сортировки (например "сортировка слиянием"). Тогда сравнение любых двух циклических сдвигов будет осуществляться за и суммарная сложность алгоритма составит .Псевдокод
suf_array(s) sufsort (suf, compare) ret suf compare ( , ) for = 0 to do if (s[( ) mod ] > s[( ) mod ]) ret 1 if (s[( ) mod ] < s[( ) mod ]) ret -1 ret 0
Алгоритм, использующий хеши
Данный алгоритм является некоторым улучшением предыдущего. Основная цель — сократить оценку времени сравнения двух циклических сдвигов до алгоритме Рабина-Карпа .
, тогда мы по аналогии с предыдущим алгоритмом получим оценку . У нас есть возможность быстро сравнивать подстроки на равенство используя метод, описанный вПусть нам необходимо сравнить два циклических сдвига
и . Найдем сначала их наибольший общий префикс ( ), для этого будем использовать двоичный поиск по длине совпадающего префикса, а проверку осуществлять с помощью посчитанных хешей префиксов. Поскольку циклический сдвиг состоит из суффикса и префикса исходной строки, то с помощью двух хешей префиксов исходной строки можно найти хеш или префикса . Таким образом можно найти хеш префикса циклического сдвига.Если оказалось, что
, то строки равны. Если же , то символы и точно различаются, и их сравнение позволяет сделать вывод, какой из циклических сдвигов меньше в лексикографическом порядке. Итак, двоичный поиск работает за , остальные операции требуют константного времени, следовательно, время, необходимое на сравнение двух циклических сдвигов, оценивается как .Псевдокод
suf_array(s) sufsort (suf, compare) ret suf compare ( , ) same lcp( , ) ret s[ + same] - s[ + same] lcp ( , ) while ( ) if (hash[ ] = hash[ ]) else ret
Алгоритм, использующий префиксы циклических сдвигов
Этот алгоритм сильно отличается от двух предыдущих и от него несложно перейти к алгоритму за
. Итак, основная идея: на каждом шаге будем сортировать префиксы циклических сдвигов длины . Еще одно важное дополнение: после каждой фазы каждому префиксу циклического сдвига будет присваиваться номер класса эквивалентности среди этих префиксов. Причем классы эквивалентности должны быть пронумерованы в лексикографическом порядке соответствующих представителей.Сначала легко можно отсортировать за
префиксы длины , то есть символы. А номера классов поставить в соответствии с порядковым номером символа в алфавите.Рассмотрим теперь переход от префиксов длины
к префиксам длины . Научимся сравнивать два префикса длины за : Пусть даны префиксы , , сравним сначала их левые половинки, использовав значения с предыдущего шага, если , то префиксы соотносятся так как же, как и , если , то переходим к сравнению и . Итак, отсортировать префиксы длины можно за . Вычислить новые можно просто пробежавшись в лексикографическом порядке по префиксам, и увеличивая номер соответствующего класса на , если текущий префикс не совпадает с предыдущим (сравнивать с помощью старых ).После шага
все циклические сдвиги будут отсортированы. Всего шагов , каждый шаг проводится за , итоговая асимптотика .Псевдокод
suf_array(s) sufsort (suf, compare1) s[0], s[1], ..., s[|s| - 1] for = 1 to step do sort (suf, compare2) [suf[0]] 0 for = 1 to do suf[ ] suf[ ] + suf[ ] suf[ ] + if ( [ ] [ ] or [ ] [ ]) [suf[ ]] = [suf[ ]] + 1 else [suf[ ]] = [suf[ ]] ret suf compare1 ( , ) ret s[ ] - s[ ] compare2 ( , ) if ( [ ] [ ]) ret [ ] - [ ] else ret [ ] - [ ]
Источники информации
- Гасфилд Д. Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология. — 2-е изд.