|
|
Строка 95: |
Строка 95: |
| <tex> \mathtt{time++}</tex> | | <tex> \mathtt{time++}</tex> |
| | | |
− | В начале алгоритма мы добавляем все элементы <tex>w_i</tex> в двоичную кучу тратя на это <tex>O(n \log n)</tex> времени. Затем мы тратим <tex>O(n \log n)</tex> на получение ответа. Тогда суммарное время работы алгоритма составит <tex>O(n \log n + n \log n)</tex> что равно <tex>O(n \log n)</tex> времени. | + | В начале алгоритма мы добавляем все элементы <tex>w_i</tex> в двоичную кучу тратя на это <tex>O(n \log n)</tex> времени. Затем мы тратим <tex>O(n \log n)</tex> на получение ответа. Тогда суммарное время работы алгоритма составит <tex>O(n \log n + n \log n)</tex> что есть <tex>O(n \log n)</tex> времени. |
| | | |
| ===Сложность алгоритма=== | | ===Сложность алгоритма=== |
Версия 19:52, 3 июня 2015
[math] 1 \mid r_i,p_i = 1 \mid \sum w_i C_i[/math]
Задача: |
Дано [math]n[/math] работ и один станок. Для каждой работы известно её время появления [math]r_{i}[/math] и вес [math]w_{i}[/math]. Время выполнения всех работ [math]p_i[/math] равно [math]1[/math]. Требуется выполнить все работы, чтобы значение [math]\sum w_{i} C_{i}[/math] было минимальным, где [math]C_{i}[/math] — время окончания работы. |
Более простые варианты исходной задачи
Перед решением основной задачи рассмотрим более простые.
Вариант 1
[math] 1 \mid p_i = 1\mid \sum C_i[/math]
Этот случай простейший. Ответом будет [math]\sum\limits_{k = 1}^n(k)[/math], так как мы [math]n[/math] раз сложим время окончания выполнения одной работы. Воспользовавшись формулой суммы первых [math]n[/math] членов арифметической прогрессии алгоритм [math]S_n=\frac{a_1+a_n}2 \cdot n[/math] будет работает за [math]O(1)[/math].
Вариант 2
[math] 1 \mid p_i = 1\mid \sum w_i C_i[/math]
Для верного выполнения просто выставим работы по порядку невозрастания весов, тогда ответом будет [math] \sum\limits_{i = 1}^n(w_i C_i)[/math], так как мы [math]n[/math] раз сложим время окончания выполнения одной работы (которое в нашем случае [math]C_{i-1}+1[/math]) домноженное на вес этой работы. Вес работ отсортировали за [math]O(n \log n)[/math]. Алгоритм работает за [math]O(n + n \log n)[/math]
Вариант 3
[math] 1 \mid r_i,p_i = 1 \mid \sum f_i[/math]
[math]f_{i}[/math] — монотонная функция времени окончания работы [math]C_{i}[/math] для работ [math]i = 1, 2, \ldots , n[/math].
Нам нужно распределить [math]n[/math] работ в разное время. Если мы назначим время [math]t[/math] для работы [math]i[/math] то цена будет [math]f_i(t + 1)[/math]. Функция [math]f_i[/math] монотонно неубывающая, тогда работы в расписании надо располагать как можно раньше для получения верного решения. [math]n[/math] временных интервалов [math]t_i[/math] для [math]n[/math] работ могут быть получены с помощью следующего алгоритма, где предполагается что работы отсортированы так:
[math] r_1 \leqslant r_2 \leqslant \ldots \leqslant r_n[/math]
Псевдокод
[math]t_1 \leftarrow r_1 [/math]
for [math] i \leftarrow 2[/math] to [math]n[/math] do
[math] t_i \leftarrow [/math] max[math](r_i, \ t_{i-1} - 1)[/math]
Этот алгоритм работает за [math]O(n \log n +n)[/math]
Основная задача
Описание алгоритма
Пусть [math]time[/math] — текущий момент времени.
Для каждого очередного значения [math]time[/math], которое изменяется от [math]0[/math] до времени окончания последней работы, будем:
- Выбирать работу [math]j[/math] из множества невыполненных работ, у которой [math]r_{i} \leqslant time[/math], а значение [math]w_{i}[/math] максимально.
- Если мы смогли найти работу [math]j[/math], то выполняем её в момент времени [math]time[/math] и удаляем из множества невыполненных работ.
- Увеличиваем [math]time[/math] на один.
Доказательство корректности алгоритма
Теорема: |
Расписание, построенное данным алгоритмом, является корректным и оптимальным. |
Доказательство: |
[math]\triangleright[/math] |
Доказательство будем вести от противного.
Рассмотрим расписание [math]S_{1}[/math], полученное после выполнения нашего алгоритма, и оптимальное расписание [math]S_{2}[/math].
Возьмём первый момент времени [math]t_{1}[/math], когда расписания различаются. Пусть в этот момент времени в [math]S_{1}[/math], будет выполняться работа с весом [math]w_{1}[/math], а в [math]S_{2}[/math] — работа с весом [math]w_{2}[/math].
Это первый момент, в котором расписания отличаются, значит в [math]S_{2}[/math] работа с весом [math]w_{1}[/math] выполнится в момент времени [math]t_{2} \gt t_{1}[/math].
Поменяем местами работы с весами [math]w_{1}[/math] и [math]w_{2}[/math] в [math]S_{2}[/math] и полуим расписание [math]S_{3}[/math]. Это возможно, потому что время появления этих работ не меньше [math]t_{1}[/math].
При такой перестановке ответы на задачу для [math]S_{2}[/math] и [math]S_{3}[/math] будут отличаться на
[math]t_{1}w_{2} + t_{2}w_{1} - t_{1}w_{1} + t_{2}w_{2} = t_{1}(w_{2} - w_{1}) + t_{2}(w_{1} - w_{2}) = (t_{1} - t_{2})(w_{2} - w_{1})[/math]
Первая скобка отрицательная: [math]t_{1} \lt t_{2}[/math]. Вторая скобка тоже отрицательная из того, что в [math]S_{1}[/math] работа с весом [math]w_1[/math] выполняется раньше, значит её вес должен быть больше [math]w_2[/math].
Итого имеем, что ответ для [math]S_{2}[/math] больше, чем ответ для [math]S_{3}[/math]. Следовательно расписание [math]S_2[/math] неоптимальное. Получили противоречие. Значит не существует такого момента времени, когда расписание [math]S_{1}[/math] отличается от оптимального. Следовательно мы доказали, что оно оптимальное. |
[math]\triangleleft[/math] |
Псевдокод
Алгоритм 1
[math] S \leftarrow \{1 \ldots n\}[/math]
[math] \mathtt{time} \leftarrow 0[/math]
[math] \mathtt{answer} \leftarrow 0[/math]
while [math] S \neq \varnothing [/math]
[math] j \leftarrow null [/math]
if [math] i \in S[/math] and [math] r_{i} \leqslant \mathtt{time}[/math] and [math]w_i \geqslant \max\limits_{j \in S, j = 1 \ldots n} w_j[/math]
[math] j \leftarrow i [/math]
if [math]j \neq null [/math]
[math] S \leftarrow S \setminus j[/math]
[math] \mathtt{Answer} \leftarrow \mathtt{Answer} + \mathtt{time} \cdot w_{j}[/math]
[math] \mathtt{time++}[/math]
Алгоритм 2
Этот алгоритм реализован с помощью двоичной кучи [math]\mathtt{Heap}[/math] в которой операции вставки и извлечения выполняются за [math]O(\log n)[/math], а операция поиска максимального элемента за [math]O(1)[/math]
[math] S \leftarrow \{1 \ldots n\}[/math]
[math] \mathtt{time} \leftarrow 0[/math]
[math] \mathtt{answer} \leftarrow 0[/math]
for [math]i \leftarrow 1 [/math] to [math]n[/math] do
Heap.insert([math]w_i[/math])
while [math] S \neq \varnothing [/math]
[math] j \leftarrow null [/math]
if [math] i \in S[/math] and [math] r_{i} \leqslant \mathtt{time}[/math] and [math]w_i \geqslant [/math] Heap.Max()
[math] j \leftarrow i [/math]
if [math]j \neq null [/math]
[math] S \leftarrow S \setminus j[/math]
Heap.extractMax()
[math] \mathtt{Answer} \leftarrow \mathtt{Answer} + \mathtt{time} \cdot w_{j}[/math]
[math] \mathtt{time++}[/math]
В начале алгоритма мы добавляем все элементы [math]w_i[/math] в двоичную кучу тратя на это [math]O(n \log n)[/math] времени. Затем мы тратим [math]O(n \log n)[/math] на получение ответа. Тогда суммарное время работы алгоритма составит [math]O(n \log n + n \log n)[/math] что есть [math]O(n \log n)[/math] времени.
Сложность алгоритма
Множество [math]S[/math] станет пустым не позже, чем через [math]n + \max\limits_{i = 1 \ldots n} r_{i}[/math] шагов цикла. Определить максимум в множестве можно за время [math]O(\log n)[/math], используя , например, очередь с приоритетами. Значит общее время работы алгоритма [math]O((n + \max\limits_{i = 1 \ldots n} r_{i})\log n)[/math]
См. также
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19-20
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 38-39
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 84-85
- Лазарев А.А., Мусатова Е.Г., Кварацхелия А.Г., Гафаров Е.Р. Пособие по теории расписаний.