Теперь рассмотрим вершины, из которых не ведет ни одно тяжёлое ребро. Будем идти от них вверх до корня или пока не пройдем легкое ребро. Получится какое-то множество путей. Утверждается, что оно будет являться искомым.
==Доказательство корректности полученной декомпозиции==
Ну там понятно вроде{{Утверждение|statement = Полученная декомпозиция является искомой.|proof =Докажем по отдельности корректность декомпозиции. 1. Все рёбра покрыты путями. Есть два типа вершин: те, из которых ведёт ровно одно тяжёлое ребро и те, из которых не ведёт ни одного тяжёлого ребра. Для первого типа вершин мы дойдем до них некоторым путём через тяжёлое ребро снизу по определению выбора путей, а лёгкие рёбра ведущие из неё возьмем как последние рёбра в соответствующих путях. Для второго типа вершин мы по определению выбора путей возьмем их как начальные и пойдем вверх. Таким образом все рёбра будут покрыты. 2. Все пути не пересекаются. Докажем от противного. Пусть мы взяли какое-то ребро дважды. Это значит, что из какой-то вершины вело более чем одно тяжёлое ребро, чего быть не могло. Получили противоречие. 3. При прохождении пути от вершины <tex>v</tex> до вершины <tex>u</tex> произойдет смена не более, чем <tex>O(\log{n})</tex> путей. Понятно.}}
==Примеры задач==
Some examples