Поиск с помощью золотого сечения — различия между версиями
(→Псевдокод) |
|||
Строка 1: | Строка 1: | ||
− | '''Поиск с помощью золотого сечения''' (англ. ''Golden section search'') {{---}} это улучшение наивной реализации [[Троичный поиск|троичного поиска]], служащего для нахождения минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается выигрыш в производительности. | + | '''Поиск с помощью золотого сечения''' (англ. ''Golden section search'') {{---}} это улучшение наивной реализации [[Троичный поиск|троичного поиска]], служащего для нахождения минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается выигрыш в производительности, т.к. каждый новый отрезок в <tex>\approx 1.618 </tex> раз короче предыдущего (против <tex>1.5</tex> у троичного поиска) и сходится он в <tex>\log_{\frac32} \left(\dfrac{1 + \sqrt{5}}{2}\right) \approx 1.1868 </tex> быстрее, чем в троичном поиске, соответственно, в <tex> \approx 2.3736 </tex> раза меньше вычислений. |
==Алгоритм== | ==Алгоритм== | ||
Строка 20: | Строка 20: | ||
Тогда: | Тогда: | ||
− | <tex> a + b = \varphi c, a = \varphi b, c = \varphi b</tex>, откуда получаем <tex> \varphi + 1 = \varphi^2 \Rightarrow \varphi = \dfrac{1 + | + | <tex> a + b = \varphi c, a = \varphi b, c = \varphi b</tex>, откуда получаем <tex> \varphi + 1 = \varphi^2 \Rightarrow \varphi = \dfrac{1 + sqrt{5}}{2}</tex> (тот корень уравнения, который меньше нуля, по понятным причинам отбросили). |
Это число совпадает с золотым сечением. Отсюда название метода. | Это число совпадает с золотым сечением. Отсюда название метода. |
Версия 20:44, 7 июня 2015
Поиск с помощью золотого сечения (англ. Golden section search) — это улучшение наивной реализации троичного поиска, служащего для нахождения минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается выигрыш в производительности, т.к. каждый новый отрезок в раз короче предыдущего (против у троичного поиска) и сходится он в быстрее, чем в троичном поиске, соответственно, в раза меньше вычислений.
Содержание
Алгоритм
Мотивация
Рассмотрим одну итерацию алгоритма троичного поиска. Попробуем подобрать такое разбиение отрезка на три части, чтобы на следующей итерации одна из точек нового разбиения совпала с одной из точек текущего разбиения. Тогда в следующий раз не придется считать функцию в двух точках, так как в одной она уже была посчитана.
Потребуем, чтобы одновременно выполнялось:
Где
— это некоторое отношение, в котором мы делим отрезок (точки и разбивают отрезок симметрично).Тогда:
, откуда получаем (тот корень уравнения, который меньше нуля, по понятным причинам отбросили).
Это число совпадает с золотым сечением. Отсюда название метода.
Свойства золотого сечения
Для реализации алгоритма нам потребуется найти
и . Если — длина исследуемого отрезка, тогда:
Заметим, что в силу того, что
— золотое сечение, то .Итоговый алгоритм выбора границ
Формально для поиска минимума (для максимума — делается аналогично) функции
делаем следующее:- Шаг 1:
- Определяем границы поиска и , затем устанавливаем текущее разбиение:
- и вычислим функцию на них:
- Шаг 2:
- если
- иначе:
- если
- Шаг 3:
- если точность нас устраивает, тогда останавливаемся, и искомая точка , иначе назад к шагу 2
Псевдокод
int goldenSectionSearch(f, l, r, eps): double phi = (1 + sqrt(5)) / 2 double resphi = 2 - phi int x1 = l + resphi * (r - l) int x2 = r - resphi * (r - l) int f1 = f(x1) int f2 = f(x2) do if f1 < f2 int r = x2 x2 = x1 f2 = f1 x1 = l + resphi * (r - l) f1 = f(x1) else int l = x1 x1 = x2 f1 = f2 x2 = r - resphi * (r - l) f2 = f(x2) while abs(r - l) > eps return (x1 + x2) / 2
Время работы
Так как на каждой итерации мы считаем одно значение функции и уменьшаем область поиска в
раз, пока , то время работы алгоритма составит .Если удельный вес вычисления функции троичным поиском ( против .
достаточно большой, тогда получим ускорение работы по сравнению с неулучшенным