Пересечение матроидов, определение, примеры — различия между версиями
(→Двудольный граф) |
|||
| Строка 13: | Строка 13: | ||
<tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]], <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это '''разноцветный лес''' (англ. ''rainbow forests''). | <tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]], <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это '''разноцветный лес''' (англ. ''rainbow forests''). | ||
| + | [[Файл:Rainbow_forest_DY.png|500px|thumb|center|Пересечение матроидов, [[Алгоритм_построения_базы_в_пересечении_матроидов|база]] матроида]] | ||
{{Утверждение | {{Утверждение | ||
| Строка 26: | Строка 27: | ||
== Двудольный граф == | == Двудольный граф == | ||
Пусть <tex>G</tex> {{---}} [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф]] и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. | Пусть <tex>G</tex> {{---}} [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф]] и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. | ||
| − | |||
{{Утверждение | {{Утверждение | ||
Версия 21:42, 9 июня 2015
| Определение: |
| Пусть даны два матроида и . Пересечением матроидов (англ. matroid intersection) и называется пара , где — носитель исходных матроидов, а . |
- Пересечение матроидов не всегда является матроидом.
- Пересечение трех и более матроидов — это NP-полная задача.
Содержание
Разноцветный лес
— графовый матроид, — разноцветный матроид (англ. multicolored matroid) (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests).
| Утверждение: |
Пересечение данных матроидов не является матроидом. |
|
Рассмотрим пару , — ребра разноцветного леса, . Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть и (См. пример 1) |
Двудольный граф
Пусть — двудольный граф и заданы два матроида , , где — множество ребёр графа, , . Тогда их пересечение — это множество всевозможных паросочетаний графа.
| Утверждение: |
Пересечение данных матроидов не является матроидом. |
|
Рассмотрим пару , — носитель, . Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть и (См. пример 2) |
Ориентированный лес
| Определение: |
| Ориентированное дерево (англ. arborescence) — ацикличный орграф (ориентированный граф, не содержащий циклов), в котором только одна вершина имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода (в них ведёт ровно по одной дуге). |
Пусть — ориентированнный граф. Граф — неориентированный граф, соответствующий графу . Тогда рассмотрим два матроида , где — множество ребёр графа. — графовый матроид , — лес в . — матроид разбиений графа , . Пересечение данных матроидов являются множества ориентированных лесов.
| Утверждение: |
Пересечение данных матроидов является матроид. |
|
Рассмотрим матроид пересечения , — множество ребер, Проверим выполнение аксиом независимости: 1) Пустое множество является ориентированным деревом, а значит входит в . 2) Любой подграф ориентированного леса также является ориентированным лесом, так как во-первых, степень захода каждой вершины в подграфе могла только уменьшится, во-вторых, подграф ацикличного графа — ацикличен. 3) Пусть количество вершин в множестве равно . Тогда количество ребер в равно . Так как , следовательно количество ребер в множестве не меньше . Пусть все ребра из множества ведут в вершины множества , значит в каждую вершину множества входит по одному ребру множества . Тогда возьмем то ребро, которое указывает в корень (в вершину с нулевой степенью захода), получим ориентированное дерево с новым корнем. Пусть не все ребра множества указывают в вершины множества , тогда возьмем то ребро , которое указывает в вершину не принадлежащую . Покажем, что оно нам подойдет. Если , тогда наше текущее ориентированное дерево пополнится еще одной вершиной и ведущем к ней ребру. Если , то мы получим еще одно ориентированное дерево. Таким образом, мы нашли ребро в множестве , которое можем добавить в множество с сохранением независимости. |
См. также
- Примеры матроидов
- Алгоритм построения базы в пересечении матроидов
- Алгоритм построения базы в объединении матроидов
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
- Lecture notes on matroid intersection