Задачи интерполирования функции — различия между версиями
Komarov (обсуждение | вклад) (Новая страница: «== Собственно интерполяция == Пусть есть числа <tex>x_1 < x_2 < x_3 < \ldots < x_n</tex> и <tex>y_1, y_2, y_3, \ldots ,y_n</tex>…») |
Komarov (обсуждение | вклад) (→Собственно интерполяция) |
||
Строка 23: | Строка 23: | ||
Составим выражение <tex>\frac{\omega_n(x)}{(x - x_j) \cdot \omega_n'(x_j)}</tex>, <tex>x \ne x_j</tex>. В этом случае дробь корректно определена | Составим выражение <tex>\frac{\omega_n(x)}{(x - x_j) \cdot \omega_n'(x_j)}</tex>, <tex>x \ne x_j</tex>. В этом случае дробь корректно определена | ||
если <tex>x \to x_j</tex>. Получаем неопределённость <tex>\frac00</tex>. Раскроем её по правилу Лопиталя: <tex>\frac{\omega'_n(x)}{\omega_n'(x_j)} = 1</tex> при <tex>x \to x_j</tex>. | если <tex>x \to x_j</tex>. Получаем неопределённость <tex>\frac00</tex>. Раскроем её по правилу Лопиталя: <tex>\frac{\omega'_n(x)}{\omega_n'(x_j)} = 1</tex> при <tex>x \to x_j</tex>. | ||
− | Тогда доопределим по непрерывности дробь единицей. Но при <tex>x \ne x_j</tex> это полином | + | Тогда доопределим по непрерывности дробь единицей. Но при <tex>x \ne x_j</tex> это полином <tex>n</tex>-й степени. Значит, |
<tex>\Phi_j(x) = \frac{\omega_n(x)}{(x-x_j) \cdot \omega_n'(x_j)}</tex>. | <tex>\Phi_j(x) = \frac{\omega_n(x)}{(x-x_j) \cdot \omega_n'(x_j)}</tex>. | ||
Версия 07:31, 16 ноября 2010
Собственно интерполяция
Пусть есть числа
и (система узлов).Требуется найти полином
степени не выше такой, что .Будем искать его в форме Лагранжа, хотя имеется ряд равносильных представлений, например, в форме Ньютона.
Очевидно, что если такой полином существует, то только один.
Будем искать его в форме Лагранжа. Для этого построим фундаментальные полиномы
степени не выше , отвечающие заданной системе узлов такие, что .Для его построения обозначим за
. Это полином степени .Составим выражение
, . В этом случае дробь корректно определена если . Получаем неопределённость . Раскроем её по правилу Лопиталя: при . Тогда доопределим по непрерывности дробь единицей. Но при это полином -й степени. Значит, .Тогда
, что и требовалось. ` Обозначим ..
Требуемый полином
найден.Замечание: из формулы для фундаментальных полномов
легко записать в развёрнутом виде:
TODO: заголовок
Выведенную ранее формулу Тейлора можно трактовать следующим образом: <<Дано
. Найти полином степени не выше такой, что >>.Ранее мы обнаружили, что это
.Теперь другая задача: <<Дана функция и система узлов. Требуется найти полином степени не выше
такой, что >>Положим
. По пункту 1 этот полином решает поставленную задачу. Для полинома Тейлора .Сейчас будет доказана теорема аналогичная теореме об интерполяционном полиноме Лагранжа, после чего станет ясно, что это задачи одного класса. Во втором случае это изложено на языке производных, а в первом~--- через значения функции в точках.
Эти два метода метода можно комбинировать, лишь бы информативных значений было Но они никому не нужны.
\newtheorem{Lagrange}{Lagrange}
\begin{Lagrange}
Пусть раз дифференцируема на . На этом промежутке дана система узлов. Тогда для соответственного
интерполяционного полинома Лагранжа выполняется равенство
, где ~--- некоторая точка из , зависящая от .
Доказательство
%%\begin{proof} Случай
тривиален. Пусть тогда .Для доказательства применим теорему Ролля. Определим вспомогательную функцию
, где ~--- коэффициент, подлежащий определению, а дано.
Для определения
потребуем, чтобы было равно .
, так как .
Итак, при выбранном
будет , , то есть принимает нулевые значения в точках. Очевидно, из узлов и точки можно сделать последовательный отрезок. На конце каждого из них принимает значение . Значит, по теореме Ролля на каждом из них найдётся по корню производной. Из полученных корней можно сделать отрезков, на каждом из них по теореме Ролля найдётся по корню второй производной\ldots В конце концов останется один отрезок, границами которого будут корни . Тогда по теореме Ролля на этом отрезке найдётся корень . Его и обозначим за .Подведём промежуточный итог: найдено
такое, что .
Продифференцируем
раз. . .Таким образом,
.Подставим
.
%%\end{proof}
\end{Lagrange}
Следствие: в условии теоремы было неравенство
,Замечание:
Следует понимать, что на самом деле какую бы систему узлов мы не взяли на
как по числу точек в ней, так и по характеру распределения значений, для этого промежутка всегда можно построить интерполяционный многочлен, который будет отличаться от неё сколь угодно много(нипанянтна~--- прим. наборщика)