Поиск подстроки в строке с использованием хеширования. Алгоритм Рабина-Карпа — различия между версиями
(→Надёжность) |
(→Надёжность) |
||
| Строка 69: | Строка 69: | ||
<tex> = (p^{1} - 1)(p^{2} - 1)(p^{0} - p^{4} - p^{8} + p^{12} ...) = ... = (p^{1} - 1)(p^{2} - 1)(p^{4} - 1) ... (p^{2^{k-1}} - 1).</tex> | <tex> = (p^{1} - 1)(p^{2} - 1)(p^{0} - p^{4} - p^{8} + p^{12} ...) = ... = (p^{1} - 1)(p^{2} - 1)(p^{4} - 1) ... (p^{2^{k-1}} - 1).</tex> | ||
| − | + | Покажем, что <tex>T</tex> <tex>\mathrm{mod}</tex> <tex>r = 0</tex>: | |
| − | + | Нужно понять, на какую максимальную степень двойки делится каждая из <tex>k - 1</tex> скобок. Заметим, что <tex>(i + 1)</tex>-ая скобка <tex>p^{2^{i + 1}} - 1 = (p^{2i} - 1)(p^{2i} + 1)</tex> делится на <tex>i</tex>-ую и ещё на какое-то чётное число <tex>p^{2i} + 1</tex>. Это означает, что если <tex>i</tex>-ая скобка делится на <tex>2^r</tex>, то <tex>(i + 1)</tex>-ая скобка делится по меньшей мере на <tex>2^{r + 1}</tex>. | |
| − | + | Получается, что <tex>(p^1 - 1)(p^2 - 1)(p^4 - 1)...(p^{2k - 1} - 1)</tex> делится по меньшей мере на <tex>2 \cdot 2^2 \cdot 2^3 \cdot ... = 2^{k(k - 1) / 2}</tex>. Значит достаточно взять <tex>k >= 12</tex>, чтобы в рассматриваемой строке было очень много различных подстрок, чьи хеши совпадут. | |
== См. также == | == См. также == | ||
Версия 18:27, 15 июня 2015
Алгоритм Рабина-Карпа предназначен для поиска подстроки в строке.
Содержание
Метод хеширования
Наивный алгоритм поиска подстроки в строке работает за в худщем случае - слишком долго. Чтобы ускорить этот процесс, можно воспользоваться методом хеширования.
| Определение: |
| Пусть дана строка . Тогда полиномиальным хешем строки называется число , где - некоторое натуральное число, а - код -ого символа строки . |
Проблему переполнения при вычислении хешей довольно больших строк можно решить так: будем считать хеши по модулю - некоторому большому числу (будем брать , чтобы модуль брался автоматически при переполнении типов). Число для их подсчета должно быть, во-первых, больше кода самого большого символа в строках, а во-вторых, взаимно простым с модулем (в нашем случае — с 2^{64}, т.е. оно должно быть нечетным).
Использование полиномиального хеша именно с убывающими степенями позволяет нам, зная хеш некоторой строки, посчитать хеш строки, образованной удалением первого символа и добавлением символа в конец, за :
.
.
Получается : .
Алгоритм
Алгоритм начинается с подсчета и .
Для вычисляется и сравнивается с . Если они оказались равны, то образец скорее всего содержится в строке начиная с позиции , хотя возможны и ложные срабатывания алгоритма. Если требуется свести такие срабатывания к минимуму или исключить вовсе, то применяют сравнение некоторых символов из этих строк, которые выбраны случайным образом, или применяют явное сравнение строк, как в наивном алгоритме поиска подстроки в строке. В первом случае проверка произойдет быстрее, но вероятность ложного срабатывания, хоть и небольшая, останется. Во втором случае проверка займет время, равное длине образца, но полностью исключит возможность ложного срабатывания.
Для ускорения работы алгоритма оптимально предпосчитать .
Псевдокод
Приведем пример псевдокода, который находит все вхождения строки в строку и возвращает массив позиций, откуда начинаются вхождения.
vector<int> rabinKarp (s : string, w : string):
vector<int> answer
int n = s.length
int m = w.length
int hashS = hash(s[1..m])
int hashW = hash(w[1..m])
for i = 1 to n - m + 1
if hashS == hashW
answer.add(i)
hashS = (p * hashS - p * hash(s[i]) + hash(s[i + m])) mod r // r — некоторое большое число, p — некоторое просто число
return answer
Новый хеш был получен с помощью быстрого пересчёта. Для сохранения корректности алгоритма нужно считать, что — пустой символ.
Рекомендуется брать (чтобы модуль брался автоматически при переполнении типов), а - больше кода самого большого символа в строках.
Время работы
Изначальный подсчёт хешей выполняется за .
Каждая итерация выполняется за , В цикле всего итераций.
Итоговое время работы алгоритма .
Надёжность
Если количество подстрок данной строки превышает количество хешей (а это выполняется тогда, когда длина строки больше , так как количество различных значений полиномиального хеша совпадает с ), то наступление коллизий неизбежно. Но даже при относительно небольших строках вероятность коллизий может быть высока, не говоря уже о способах составления специальных строк, где алгоритм на хешах выдаёт частые ложные срабатывания.
Например, возьмем за строку Туэ-Морса[1] длиной , , - любое просто число.
Обозначим за строку для фиксированного , а за инвертированную строку .
Покажем, что при , . Ведь если это так, то сами по себе и встретятся в больших строках много-много раз.
Разберемся, что значит . Можно смело заменить коды символов на нули и единицы в коэффициентах многочлена - тем самым мы просто сократим обе части на .
Что такое ? Нетрудно сообразить, что эта величина есть: . То есть это знакопеременная сумма степеней , где знаки чередуются по тому же правилу, что и символы в строке.
Будем последовательно выносить из этой суммы множители за скобку:
Покажем, что :
Нужно понять, на какую максимальную степень двойки делится каждая из скобок. Заметим, что -ая скобка делится на -ую и ещё на какое-то чётное число . Это означает, что если -ая скобка делится на , то -ая скобка делится по меньшей мере на .
Получается, что делится по меньшей мере на . Значит достаточно взять , чтобы в рассматриваемой строке было очень много различных подстрок, чьи хеши совпадут.
См. также
- Наивный алгоритм поиска подстроки в строке
- Поиск наибольшей общей подстроки двух строк с использованием хеширования
Примечания
Источники информации
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 3-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2014. — 1328 с.: ил. — ISBN 978-5-8459-1794-2 (рус.) — страницы 1036–1041.
- Codeforces: Anti-hash test