Дифференциальные уравнения — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 22: Строка 22:
  
 
\end{matrix}\right.</tex><br> называется задачей Коши (начальной задачей)}}
 
\end{matrix}\right.</tex><br> называется задачей Коши (начальной задачей)}}
 +
 +
==Условие Липшица==

Версия 18:43, 7 сентября 2015

Дифференциальные уравнения

Определения

Определение:
Соотношение вида [math]F(x, y(x), {y}'(x), ... , y^{(n)}(x)) = 0\:(1)[/math] называется обыкновенным дифференциальным уравнением (ОДУ).


Определение:
Порядок наивысшей производной входящей в уравнение называется порядком уравнения.


Определение:
[math]F(x, y(x), {y}'(x)) = 0\:(2)\: - [/math] дифференциальное уравнение 1-го порядка


Определение:
Решением дифференциального уравнения [math](2)[/math] называется функция [math]y(x) \in C(a,b):[/math]
[math]F(x, y(x), {y}'(x)) \equiv 0[/math]


Определение:
[math]\frac{dy}{dx}=f(x,y)\:(3) - [/math] уравнение в нормальной форме.


Определение:
Изоклиной ДУ[math](3)[/math] называется кривая определяемая равенством [math]f(x,y)=k[/math], где [math]k - const , tg\alpha = k[/math].


Задача Коши

Определение:
Задача нахождения решения дифференциального уравнения [math]\frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y)[/math], которое удовлетворяет следующим условиям:
[math]\left\{\begin{matrix} \frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y) \\ y = y_{0}, \:\: \mathrm{if} \:\: x = x_{0} \end{matrix}\right.[/math]
называется задачей Коши (начальной задачей)


Условие Липшица