Дифференциальные уравнения — различия между версиями
Строка 28: | Строка 28: | ||
\end{matrix}\right.</tex><br><tex>\Rightarrow \:\: f(x, y) \leqslant M, \:\: M > 0</tex> | \end{matrix}\right.</tex><br><tex>\Rightarrow \:\: f(x, y) \leqslant M, \:\: M > 0</tex> | ||
{{Определение | {{Определение | ||
− | |definition=условие Липшица: <br><tex>\left | f(x,\bar{y}) - f(x, \bar{\bar{y}}) \right | \leq l \left | \bar{\bar{y}} - \bar{y} \right |</tex> для некоторой константы <tex>l > 0</tex>}} | + | |definition=условие Липшица: <br><tex>\left | f(x,\bar{y}) - f(x, \bar{\bar{y}}) \right | \leq l \left | \bar{\bar{y}} - \bar{y} \right |, \:\: \forall (x,\bar{y}), (x,\bar{\bar{y}}) \in D</tex> для некоторой константы <tex>l > 0</tex>}} |
Очевидно, условие Липшица выполняется при условии <tex>\left | \frac{\partial f}{\partial y} \right | \in C(D)</tex>. | Очевидно, условие Липшица выполняется при условии <tex>\left | \frac{\partial f}{\partial y} \right | \in C(D)</tex>. |
Версия 19:08, 7 сентября 2015
Определения
Определение: |
Соотношение вида | называется обыкновенным дифференциальным уравнением (ОДУ).
Определение: |
Порядок наивысшей производной входящей в уравнение называется порядком уравнения. |
Определение: |
дифференциальное уравнение 1-го порядка |
Определение: |
Решением дифференциального уравнения | называется функция
Определение: |
уравнение в нормальной форме. |
Определение: |
Изоклиной ДУ | называется кривая определяемая равенством , где .
Задача Коши
Определение: |
Задача нахождения решения дифференциального уравнения называется задачей Коши (начальной задачей) | , которое удовлетворяет следующим условиям:
в некоторых случаях удается упростить решение задачи Коши наложив ограничения на
Определение: |
условие Липшица: для некоторой константы |
Очевидно, условие Липшица выполняется при условии
.