|   |   | 
| Строка 16: | Строка 16: | 
|  | {{Определение |  | {{Определение | 
|  | |definition=Изоклиной ДУ<tex>(3)</tex> называется кривая определяемая равенством <tex>f(x,y)=k</tex>, где <tex>k - const ,  tg\alpha = k</tex>.}} |  | |definition=Изоклиной ДУ<tex>(3)</tex> называется кривая определяемая равенством <tex>f(x,y)=k</tex>, где <tex>k - const ,  tg\alpha = k</tex>.}} | 
|  | + | {{Определение | 
|  | + | |difinition= Общим решением ДУ 1-го порядка <tex>y = \phi (x, C):</tex> для любого наперед заданного значения <tex>C_{0}, \:\: y = \phi (x, C_{0}) - </tex> решение ДУ }} | 
|  |  |  |  | 
|  | ==Задача Коши== |  | ==Задача Коши== | 
		Версия 15:28, 17 сентября 2015
Дифференциальные уравнения
Определения
| Определение: | 
| Соотношение вида [math]F(x, y(x), {y}'(x), ... , y^{(n)}(x)) = 0\:(1)[/math] называется обыкновенным дифференциальным уравнением (ОДУ). | 
| Определение: | 
| Порядок наивысшей производной входящей в уравнение называется порядком уравнения. | 
| Определение: | 
| [math]F(x, y(x), {y}'(x)) = 0\:(2)\: - [/math] дифференциальное уравнение 1-го порядка | 
| Определение: | 
| Решением дифференциального уравнения [math](2)[/math] называется функция [math]y(x) \in C(a,b):[/math] [math]F(x, y(x), {y}'(x)) \equiv 0[/math]
 | 
| Определение: | 
| [math]\frac{dy}{dx}=f(x,y)\:(3) - [/math] уравнение в нормальной форме. | 
| Определение: | 
| Изоклиной ДУ[math](3)[/math] называется кривая определяемая равенством [math]f(x,y)=k[/math], где [math]k - const ,  tg\alpha = k[/math]. | 
| Определение: | 
| {{{definition}}} | 
Задача Коши
| Определение: | 
| Задача нахождения решения дифференциального уравнения [math]\frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y)[/math], которое удовлетворяет следующим условиям: [math]\left\{\begin{matrix}
 \frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y) \\ y = y_{0}, \:\: \mathrm{if} \:\: x = x_{0} 
\end{matrix}\right.[/math]
 называется задачей Коши (начальной задачей)
 | 
в некоторых случаях удается упростить решение задачи Коши наложив ограничения на [math]f(x,y):[/math]
[math]f(x,y) \in C(D), \:\: D = \left\{\begin{matrix}
\left | x-x_{0} \right | \leqslant a  \\ \left | y-y_{0} \right | \leqslant b
\end{matrix}\right.[/math]
[math]\Rightarrow \:\: \left | f(x, y) \right | \leqslant M, \:\: M \gt  0[/math]
| Определение: | 
| условие Липшица: [math]\left | f(x,\bar{y}) - f(x, \bar{\bar{y}}) \right | \leq l \left | \bar{\bar{y}} - \bar{y} \right |, \:\: \forall (x,\bar{y}), (x,\bar{\bar{y}}) \in D[/math]  для некоторой константы [math]l \gt  0[/math]
 | 
Очевидно, условие Липшица выполняется при условии [math]\left | \frac{\partial f}{\partial y} \right | \in C(D)[/math].
| Теорема (Пикар): | 
| Пусть [math]f(x,y)[/math] удовлетворяет условию Липшица и [math]f(x,y) \in C(D)[/math], тогда существует единственное решение задачи Коши 
[math]y=y(x), \:\: y \in C(\left | x-x_{0} \right | \leqslant h)[/math], где [math]h = min(a, \frac{b}{M})[/math]. | 
| Доказательство: | 
| [math]\triangleright[/math] | 
| Переформулируем задачу Коши следующим образом: [math]y(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y)d\bar{x}[/math]так как [math]\left | y_{1} - y^{\ast} \right | \leqslant l \int_{x_{0}}^{x}\left | y_{0} - y^{\ast} \right | d\bar{x} \leqslant M l h[/math], следовательно [math]\left | y_{n} - y^{\ast} \right | \leqslant \frac{l^{n}Mh^{n}}{n!}[/math], значит левая часть стремится к 0 при [math]n \leftarrow +\infty[/math] и по единственности предела [math]y^{\ast} \equiv y[/math]. Противоречие.Будем строить решение задачи Коши итеративным методом: [math]y_{n}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{n-1}(\bar{x}))d\bar{x}[/math].    Далее возможны два случая:
 1) [math]y_{n}(x) \equiv y_{0} \:\: \Rightarrow \:\: f(x, y_{0}) = 0  \:\: \Rightarrow \:\: y_{0} -[/math]  решение.
 2) [math]f(x, y_{0}) \neq 0:[/math] предварительно докажем, что:
 [math]a) \:\:\: y_{n}(x) \in C(\left | x - x_{0} \right | \leqslant h)[/math]
 [math]b) \:\:\: \left | y_{n}(x) - y_{0} \right | \leqslant b,  \:\: \mathrm{if} \:\: \left | x - x_{0} \right | \leqslant h[/math]
 [math]c) \:\:\: y_{n}(x) \rightrightarrows \bar{y}(x) \:\:[/math]
 [math]d) \:\:\: \bar{y}(x) \in C(\left | x - x_{0} \right | \leqslant h)[/math]
 [math]e) \:\:\: \left | \bar{y}(x) - y_{0} \right | \leqslant b, \:\: \mathrm{if} \:\: \left | x - x_{0} \right | \leqslant h[/math]
 
 a), b) База: [math] \:\: y_{1}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{0}(\bar{x}))d\bar{x} \: .[/math] По теореме Барроу [math]y_{1}(x) \: - [/math] непрерывна при [math]\left | x - x_{0} \right | \leqslant a.[/math]
 [math]\left | y_{1}(x) - y_{0} \right | \leqslant \left | \int_{x_{0}}^{x} f(\bar{x}, y_{0})d\bar{x} \right |  \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{0})\right |d\bar{x} \leqslant M \left | x - x_{0} \right | \leqslant Mh \leqslant b.[/math]
 переход доказывается аналогично.
 c) Для доказательства равномерной сходимости воспользуемся признаком Вейерштрасса. Составим функциональный ряд [math]y_{0} + (y_{1} - y_{0}) + (y_{2} - y_{1}) + \dotsb[/math] и замажорируем его слагаемое слагаемым сходящейся числовой последовательности.
 [math]\left | y_{1} - y_{0} \right | \leqslant M \left | x - x_{0} \right | \leqslant Mh[/math]
 [math]\left | y_{2} - y_{1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{1}) - f(\bar{x}, y_{0}) \right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left |       y_{1} - y_{0}\right |d\bar{x} \leqslant [/math] [math]lM \int_{x_{0}}^{x}\left | \bar{x} - x_{0} \right | d\bar{x} = lM \frac{\left | x - x_{0} \right |^{2}}{2} \leqslant \frac{M}{l} \frac{(lh)^{2}}{2}[/math]
 [math]\left | y_{3} - y_{2}\right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{2}) - f(\bar{x}, y_{1})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{2} - y_{1}\right |d\bar{x} \leqslant l \int_{x_{0}}^{x}lM \frac{\left | \bar{x} - x_{0} \right |^{2}}{2}d\bar{x} =[/math] [math] \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{3}}{6} \leqslant \frac{M}{l} \frac{(lh)^{3}}{3!}[/math]
 [math]...[/math]
 [math]\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant [/math] [math] l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}[/math]
 Теперь проверим сходимость полученного числового ряда: [math] \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).[/math] Видим, что числовой ряд сходистя, значит исходный функциональный ряд равомерно сходится к некоторой функции [math]\bar{y}(x)[/math], которая будет непрерывна и огранинченна в силу непрерывности и ограниченности [math]y_{n}(x)[/math] ( d), e)).
 Теперь проверим, что [math]\bar{y}(x)[/math] является решением задачи Коши. т.к. [math]y_{n}(x) \rightrightarrows \bar{y}(x) \:\: \Leftrightarrow \: \forall \varepsilon \gt  0 \: \exists  N \in \mathbb{N}: \forall n \gt  N \Rightarrow \left | y_{n}(x) - \bar{y}(x) \right | \lt  \varepsilon, \: [/math][math]\: \forall x \in (x_{0} - h, x_{0} + h).[/math]
 [math]\left | y_{n}(x) - \bar{y}(x) \right | = \left | \int_{x_{0}}^{x} (f(\bar{x}, y_{n}) - f(\bar{x}, \bar{y}))d\bar{x} \right | \leqslant l \int_{x_{0}}^{x}\left | y_{n} - \bar{y} \right |d\bar{x} \leqslant l \varepsilon h[/math]. Видим, что для функции [math]\bar{y}(x)[/math] выполяется [math]\bar{y}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},\bar{y})d\bar{x}[/math] значит, она будет решением.
 Докажем единственность.
 Пусть  [math]\exists y^{\ast} = y^{\ast}(x) \: - [/math] решение задачи Коши: [math]y^{\ast} \not\equiv y[/math], оценим величину [math]\left | y_{n} - y^{\ast} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y^{\ast}) \right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y^{\ast} \right | d\bar{x} [/math]
 
 | 
| [math]\triangleleft[/math] |