Отношение связности, компоненты связности — различия между версиями
(→Случай неориентированного графа) |
|||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Две вершины <tex>u</tex> и <tex>v</tex> называются '''связаными''' (adjacent), если в графе <tex>G</tex> существует [[Основные определения теории графов|путь]] из <tex>u</tex> в <tex>v</tex> (обозначение: <tex>u \rightsquigarrow v </tex>).}} | + | Две вершины <tex>u</tex> и <tex>v</tex> называются '''связаными''' ''(adjacent)'', если в графе <tex>G</tex> существует [[Основные определения теории графов|путь]] из <tex>u</tex> в <tex>v</tex> (обозначение: <tex>u \rightsquigarrow v </tex>).}} |
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Связность {{---}} '''[[Отношение_эквивалентности|отношение эквивалентности]]''' (equivalence relation). | + | Связность {{---}} '''[[Отношение_эквивалентности|отношение эквивалентности]]''' ''(equivalence relation)''. |
|proof= | |proof= | ||
'''[[Рефлексивное_отношение|Рефлексивность]]''': <tex>\forall a \in V a \rightsquigarrow a</tex> (очевидно). | '''[[Рефлексивное_отношение|Рефлексивность]]''': <tex>\forall a \in V a \rightsquigarrow a</tex> (очевидно). | ||
Строка 19: | Строка 19: | ||
|id = def2 | |id = def2 | ||
|definition= | |definition= | ||
− | '''Компонентой связности''' (connected component) называется класс эквивалентности относительно связности.}} | + | '''Компонентой связности''' ''(connected component)'' называется класс эквивалентности относительно связности.}} |
{{Определение | {{Определение | ||
|id = connected_graph | |id = connected_graph | ||
|definition= | |definition= | ||
− | Граф <tex>G=(V, E)</tex> называется '''связным''' (connectivity graph), если он состоит из одной компоненты связности. В противном случае граф называется '''несвязным'''.}} | + | Граф <tex>G=(V, E)</tex> называется '''связным''' ''(connectivity graph)'', если он состоит из одной компоненты связности. В противном случае граф называется '''несвязным'''.}} |
== Случай ориентированного графа == | == Случай ориентированного графа == |
Версия 19:13, 5 ноября 2015
Содержание
Случай неориентированного графа
Определение: |
Две вершины путь из в (обозначение: ). | и называются связаными (adjacent), если в графе существует
Теорема: |
Связность — отношение эквивалентности (equivalence relation). |
Доказательство: |
Рефлексивность: (очевидно). Симметричность: (в силу неориентированности графа). Транзитивность: . Действительно, сначала пройдем от до , затем от до , что и означает существования пути . |
Определение: |
Компонентой связности (connected component) называется класс эквивалентности относительно связности. |
Определение: |
Граф | называется связным (connectivity graph), если он состоит из одной компоненты связности. В противном случае граф называется несвязным.
Случай ориентированного графа
В общем случае для ориентированного графа существование пути — не симметричное отношение, поэтому вместо понятия связности различают понятие слабой и сильной связности.
Слабая связность
<wikitex>
Определение: |
Отношение $R(v, u)$ называется отношением слабой связности (weak connectivity), если вершины $u$ и $v$ связаны в неориентированном графе $G'$, полученном из графа $G$ удалением ориентации с рёбер. |
Теорема: |
Слабая связность является отношением эквивалентности. |
Доказательство: |
Аналогично доказательству соответствующей теоремы для неориентированного графа. |
</wikitex>
Сильная связность
Определение: |
Отношение | на вершинах графа называется отношением сильной связности (strong connectivity).
Теорема: |
Сильная связность — отношение эквивалентности. |
Доказательство: |
Рефлексивность и симметричность очевидны. Рассмотрим транзитивность: |
Определение: |
Пусть ориентированный граф. Компонентой сильной связности (strongly connected component) называется класс эквивалентности множества вершин этого графа относительно сильной связности. | —
Определение: |
Ориентированный граф называется сильно связным (strongly connected), если он состоит из одной компоненты сильной связности. |
См. также
Источники информации
- Отношения связности для вершин неорграфа на ivtb.ru
- Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.