Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре — различия между версиями
Novik (обсуждение | вклад) (→Сложность алгоритма) |
Novik (обсуждение | вклад) (→Псевдокод) |
||
Строка 13: | Строка 13: | ||
== Псевдокод == | == Псевдокод == | ||
+ | Функция <tex>findHamiltonianCycle</tex> получает на вход очередь вершин и находит гамильтонов цикл в графе. | ||
+ | |||
{| width = 100% | {| width = 100% | ||
|- | |- | ||
| | | | ||
− | + | '''function''' <tex>\mathtt{findHamiltonianCycle}(queue):</tex> | |
− | ''' | + | '''for''' k = 0...n*(n - 1) |
− | + | '''if''' <tex>(queue.\mathtt{at}(0), queue.\mathtt{at}(1)) \notin E</tex> <font color = "green">// Проверяем существования ребра между первой и второй вершинами очереди</font> | |
− | + | <tex>i = 2</tex> | |
− | + | '''while''' <tex>(queue.\mathtt{at}(0), queue.\mathtt{at}(i)) \notin E</tex> '''or''' <tex>(queue.at(1), queue.at(i + 1)) \notin E</tex> | |
− | + | <tex>i</tex>++ <font color = "green">// Ищем индекс удовлетворяющую условию вершины</font> | |
− | + | <tex>queue.\mathtt{swapSubQueue}(2, i)</tex> <font color = "green">// Разворачиваем часть перестановки от 2-й до найденной позиции включительно</font> | |
− | + | <tex>queue.\mathtt{pushBack}(queue.\mathtt{top}())</tex> | |
− | + | <tex>queue.\mathtt{pop}()</tex> | |
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Версия 20:30, 8 ноября 2015
Содержание
Задача: |
Пусть дан граф теоремы Оре или теоремы Дирака. Требуется найти в нем гамильтонов цикл. | , удовлетворяющий условию
Описание алгоритма
Поступим следующим образом: заведем очередь и положим в нее все вершины нашего графа (не важно в каком порядке). Пусть
. Тогда раз будем делать следующую операцию:- Пусть — это голова очереди, — следующая за ней вершина и так далее. Если между первой и второй вершиной в очереди есть ребро в графе , то перемещаем первую вершину в конец очереди и переходим к следующей итерации.
- Если между первой и второй вершиной в очереди ребра нет, то найдем вершину теорема Оре, либо теорема Дирака, то такая вершина обязательно найдется; чуть позже докажем это явно). После чего поменяем в очереди местами вершины и , и , и , и так далее, пока (то есть пробегает все значения от до значения заданного неравенством). Теперь у нас появилось ребро между первой и второй вершинами в очереди (теперь вторая вершина, это та, которая была до разворота на -й позиции), а также, гарантированно существует ребро между -й и -й вершинами очереди. После этого, так же как и в первом случае, оправляем первую вершину в конец очереди. , где , такую что, ребра (так как у нас для графа выполнена либо
Таким образом после
итераций, мы получаем последовательность (вершины лежащие в очереди), где любые 2 соседние вершины соединены ребром, все вершины графа находятся в этой последовательности, и более того, каждая ровно один раз, а также существует ребро между последней и первой вершинами очереди, а это и значит, что мы решили поставленную задачу.Псевдокод
Функция
получает на вход очередь вершин и находит гамильтонов цикл в графе.
functionfor k = 0...n*(n - 1) if // Проверяем существования ребра между первой и второй вершинами очереди while or ++ // Ищем индекс удовлетворяющую условию вершины // Разворачиваем часть перестановки от 2-й до найденной позиции включительно |
Доказательство алгоритма
Лемма: |
Каждый раз, когда нам надо искать вершину , где , такую что , такая вершина действительно существует. |
Доказательство: |
Рассмотрим множество теоремы Оре или теоремы Дирака). Из этого следует, что , а это и значит, что искомая вершина существует. | , состоящее из индексов вершин, смежных с , и множество , индексов вершин смежных с . Заметим, что , а , тогда , а значит , в то же время (по условию
Лемма: |
После итераций между каждой парой соседних вершин очереди существует ребро. |
Доказательство: |
Достаточно заметить, что каждую итерацию алгоритма, мы, в случае отсутствия ребра, между | и увеличиваем количество пар соседних в очереди вершин, между которыми есть ребро, как минимум на (это прямое следствие условия поиска нужной вершины, в случае отсутствия ребра), для поиска такой пары требуется не более итераций. Таких пар изначально не более , откуда следует, что после итераций, второе условие будет выполнено.
Теорема: |
Алгоритм находит гамильтонов цикл. |
Доказательство: |
Из предыдущих лемм следует корректность алгоритма. |
Сложность алгоритма
Поиск вершины, удовлетворяющей заданному условию работает за
, а таких поисков будет осуществлено не более чем . Оставшиеся итерации выполняются за . Тогда алгоритм выполняется за .