Изменения

Перейти к: навигация, поиск

Список заданий по ТФЯ 2015

4423 байта добавлено, 13:52, 9 ноября 2015
Нет описания правки
# Докажите, что множество чисел $i$, таких, что в десятичной записи числа $\pi$ встречается последовательность из $i$ семерок подряд, перечислимо. Является ли оно разрешимым? Почему?
# Докажите, что множество чисел $i$, таких, что в десятичной записи числа $\pi$ как подстрока десятичная запись $i$, перечислимо. Можно ли привести тот же аргумент, что и в предыдущем задании, для доказательства его (не)разрешимости?
# Докажите, что любое бесконечное перечислимое множество содержит бесконечное разрешимое подмножество.
# Пусть $f$ - вычислимая функция. Докажите, что существует вычислимая функция $g$ с областью определения, совпадающей с областью значений $f$, такая что $f(g(f(x))) = f(x)$ для любого $x$, на котором $f$ определена.
# Вещественное число $\alpha$ называется вычислимым, если существует вычислимая функция $a$, которая по любому рациональному $\varepsilon > 0$ даёт рациональное приближение к $\alpha$ с ошибкой не более $\varepsilon$, то есть $|\alpha-a(\varepsilon)| \le \varepsilon$ для любого рационального $\varepsilon > 0$. Докажите, что число $\alpha$ вычислимо тогда и только тогда, когда множество рациональных чисел, меньших $\alpha$, разрешимо
# Докажите, что число $\alpha$ вычислимо тогда и только тогда, когда последовательность знаков представляющей его десятичной (или двоичной) дроби вычислима.
# Докажите, что число $\alpha$ вычислимо тогда и только тогда, когда существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к $\alpha$ (то есть является вычислимой функция, которая по $\varepsilon$ возвращает $n_0$, такое что $|a_n - \alpha| \le \varepsilon$ для $n > n_0$)
# Покажите, что сумма, произведение, разность и частное вычислимых действительных чисел вычислимы. Покажите, что корень многочлена с вычислимыми коэффициентами вычислим.
# Сформулируйте и докажите утверждение о том, что предел вычислимо сходящейся последовательности вычислимых действительных чисел вычислим.
# Вещественное число $\alpha$ называют перечислимым снизу, если множество всех рациональных чисел, меньших $\alpha$, перечислимо. Перечислимость сверху определяется аналогично. Докажите, что число $\alpha$ перечислимо снизу тогда и только тогда, когда оно является пределом некоторой вычислимой возрастающей последовательности рациональных чисел.
# Докажите, что вещественное число вычислимо тогда и только тогда, когда оно перечислимо снизу и сверху.
# Покажите, что следующие три свойства множества $X$ равносильны: (1) $X$ можно представить в виде $A \setminus B$, где $A$ — перечислимое множество, а $B$ — его перечислимое подмножество; (2) $X$ можно представить в виде $A \setminus B$, где $A$ и $B$ — перечислимые множества; (3) $X$ можно представить в виде симметрической разности двух перечислимых множеств.
# Покажите, что множество $X$ можно представить в виде $A\setminus (B\setminus C)$, где $A \supset B \supset C$ — перечислимые множества, если и только если его можно представить в виде симметрической разности (суммы по модулю 2) трёх перечислимых множеств.
Анонимный участник

Навигация