Теорема Хватала — различия между версиями
Строка 45: | Строка 45: | ||
* <tex> d_k \leqslant k </tex>, | * <tex> d_k \leqslant k </tex>, | ||
* <tex> |\{ d_1, d_2, \ldots, d_k \}| = k </tex>. | * <tex> |\{ d_1, d_2, \ldots, d_k \}| = k </tex>. | ||
− | <tex> \{ d_1, d_2, \ldots, d_k \} \subseteq \{ v \in VG | d_v \leqslant k \} \Rightarrow |\{ v \in VG | d_v \leqslant k \}| \geqslant k </tex> | + | <tex> \{ d_1, d_2, \ldots, d_k \} \subseteq \{ v \in VG | d_v \leqslant k \} \Rightarrow |\{ v \in VG | d_v \leqslant k \}| \geqslant k </tex>. |
"<tex> \Leftarrow </tex>" Пусть: | "<tex> \Leftarrow </tex>" Пусть: | ||
Строка 51: | Строка 51: | ||
* <tex> p \geqslant 0 </tex>. | * <tex> p \geqslant 0 </tex>. | ||
Расположим вершины в неубывающем порядке их степеней. <br> | Расположим вершины в неубывающем порядке их степеней. <br> | ||
− | <tex> d_1 \leqslant d_2 \leqslant \ldots \leqslant d_k \leqslant \ldots \leqslant d_{k + p} \leqslant k \Rightarrow d_k \leqslant k </tex> | + | <tex> d_1 \leqslant d_2 \leqslant \ldots \leqslant d_k \leqslant \ldots \leqslant d_{k + p} \leqslant k \Rightarrow d_k \leqslant k </tex>. |
}} | }} | ||
Строка 64: | Строка 64: | ||
* <tex> d_{n - k} \leqslant d_{n - k + 1} \leqslant \ldots \leqslant d_n </tex>, | * <tex> d_{n - k} \leqslant d_{n - k + 1} \leqslant \ldots \leqslant d_n </tex>, | ||
* <tex> |\{ d_{n - k}, d_{n - k + 1}, \ldots , d_n \}| = k + 1 </tex>. | * <tex> |\{ d_{n - k}, d_{n - k + 1}, \ldots , d_n \}| = k + 1 </tex>. | ||
− | <tex> \{ d_{n - k}, d_{n - k + 1}, \ldots , d_n \} \subseteq \{ v \in VG | d_v \geqslant n - k \} \Rightarrow \{ v \in VG | d_v \geqslant n - k \} \geqslant k + 1 </tex> | + | <tex> \{ d_{n - k}, d_{n - k + 1}, \ldots , d_n \} \subseteq \{ v \in VG | d_v \geqslant n - k \} \Rightarrow \{ v \in VG | d_v \geqslant n - k \} \geqslant k + 1 </tex>. |
"<tex> \Leftarrow </tex>" Пусть: | "<tex> \Leftarrow </tex>" Пусть: | ||
* <tex> |\{ v \in VG | d_v \geqslant n - k \}| = k + 1 + p, (p \geqslant 0)</tex>, | * <tex> |\{ v \in VG | d_v \geqslant n - k \}| = k + 1 + p, (p \geqslant 0)</tex>, | ||
Расположим вершины в неубывающем порядке их степеней. | Расположим вершины в неубывающем порядке их степеней. | ||
− | <tex> d_n \geqslant d_{n - 1} \ldots \geqslant d_{n - k} \geqslant \ldots \geqslant d_{n - k - p} \geqslant n - k \Rightarrow d_{n - k} \geqslant n - k </tex> | + | <tex> d_n \geqslant d_{n - 1} \ldots \geqslant d_{n - k} \geqslant \ldots \geqslant d_{n - k - p} \geqslant n - k \Rightarrow d_{n - k} \geqslant n - k </tex>. |
}} | }} | ||
Строка 80: | Строка 80: | ||
# Пусть <tex> d'_k > k </tex>. Тогда первый аргумент импликации всегда ложен, следовательно импликация верна вне зависимости от второго аргумента. Значит, в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | # Пусть <tex> d'_k > k </tex>. Тогда первый аргумент импликации всегда ложен, следовательно импликация верна вне зависимости от второго аргумента. Значит, в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | ||
# Пусть <tex> d'_k \leqslant k, \mbox{ } d'_{n - k} \geqslant d_{n - k} \geqslant n - k </tex>. Тогда оба аргумента импликации всегда истинны. Значит, и в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | # Пусть <tex> d'_k \leqslant k, \mbox{ } d'_{n - k} \geqslant d_{n - k} \geqslant n - k </tex>. Тогда оба аргумента импликации всегда истинны. Значит, и в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | ||
− | Значит, импликация <tex> (*) </tex> выполняется и для последовательности <tex> d' </tex> | + | Значит, импликация <tex> (*) </tex> выполняется и для последовательности <tex> d' </tex>. |
}} | }} | ||
Строка 106: | Строка 106: | ||
Пусть <tex> j \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex>: <tex> u_1 \xrightarrow{e_j} u_{j + 1} \rightarrow \ldots \rightarrow u_n \xrightarrow{f_j} u_j \rightarrow u_{j - 1} \rightarrow \ldots \rightarrow u_1 </tex>, что противоречит условию, что граф негамильтонов. | Пусть <tex> j \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex>: <tex> u_1 \xrightarrow{e_j} u_{j + 1} \rightarrow \ldots \rightarrow u_n \xrightarrow{f_j} u_j \rightarrow u_{j - 1} \rightarrow \ldots \rightarrow u_1 </tex>, что противоречит условию, что граф негамильтонов. | ||
[[Файл: Hvatal_4.png|270px|thumb|center|]] | [[Файл: Hvatal_4.png|270px|thumb|center|]] | ||
− | Значит, <tex> S \cap T </tex> | + | Значит, <tex> S \cap T </tex>. |
}} | }} | ||
Строка 119: | Строка 119: | ||
Так как <tex> k = \deg u </tex>, то вершина <tex> u </tex> может быть смежна максимум с <tex> k </tex> из этих <tex> k+1 </tex> вершин. Значит, существует вершина <tex> w </tex>, не являющаяся смежной с <tex> u </tex> и для которой <tex> \deg w \geqslant n - k </tex>. Тогда получим, что <tex> \deg u + \deg w \geqslant k + (n - k) = n > \deg u + \deg v </tex>, что противоречит выбору <tex> u </tex> и <tex> v </tex>. | Так как <tex> k = \deg u </tex>, то вершина <tex> u </tex> может быть смежна максимум с <tex> k </tex> из этих <tex> k+1 </tex> вершин. Значит, существует вершина <tex> w </tex>, не являющаяся смежной с <tex> u </tex> и для которой <tex> \deg w \geqslant n - k </tex>. Тогда получим, что <tex> \deg u + \deg w \geqslant k + (n - k) = n > \deg u + \deg v </tex>, что противоречит выбору <tex> u </tex> и <tex> v </tex>. | ||
− | Значит, предположение неверно | + | Значит, предположение неверно. |
}} | }} | ||
Версия 19:50, 11 ноября 2015
Определение: |
Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
Доказательство: |
Замечание: Если в неубывающей последовательности увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место , то исходная последовательность будет мажорироваться полученной. Если , то утверждение леммы, очевидно, выполняется. Пусть .
При добавлении в граф ребра Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного. , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Теорема (Хватал): | |||||||||||||||||||||||
Пусть:
Тогда если | |||||||||||||||||||||||
Доказательство: | |||||||||||||||||||||||
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа .Выберем две несмежные вершины и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : .Пусть .
Из определений и следует, что . Значит, .Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Пусть . Значит, вершин, степень которых не превосходит .По лемме №1: . В силу импликации : .По лемме №2, вершин, степень которых не меньше .Так как Значит, предположение неверно. , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . | |||||||||||||||||||||||
См. также
Источники информации
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы