Теорема Редеи-Камиона — различия между версиями
(→Литература) |
|||
Строка 123: | Строка 123: | ||
* [[Турниры]] | * [[Турниры]] | ||
− | == | + | == Источники информации == |
* Асанов М., Баранский В., Расин В.: ''Дискретная математика: Графы, матроиды, алгоритмы'' | * Асанов М., Баранский В., Расин В.: ''Дискретная математика: Графы, матроиды, алгоритмы'' | ||
* Ф. Харари: ''Теория графов'' | * Ф. Харари: ''Теория графов'' | ||
Строка 129: | Строка 129: | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Обходы графов]] | [[Категория: Обходы графов]] | ||
+ | [[Категория: Гамильтоновы графы]] |
Версия 19:51, 11 ноября 2015
Теорема (Редеи-Камиона (для пути)): |
В любом турнире есть гамильтонов путь. |
Доказательство: |
Приведем доказательство по индукции по числу вершин в графе. Пусть — количество вершин в графе.База индукции: Очевидно, для утверждение верно.Индукционный переход: Пусть предположение верно для всех турниров с количеством вершин не более . Рассмотрим турнир с вершинами.Пусть – произвольная вершина турнира . Тогда турнир имеет вершин, значит, в нем есть гамильтонов путь .Одно из ребер или обязательно содержится в . Если ребро , то путь — гамильтонов.Пусть теперь ребро — первая вершина пути , для которой ребро . Если такая вершина существует, то в существует ребро и путь – гамильтонов.Если такой вершины не существует, то путь — гамильтонов. Значит, в любом случае в турнире существует гамильтонов путь, q.e.d. |
Теорема (Редеи-Камиона (для цикла)): | ||||||||||
В любом сильно связанном турнире есть гамильтонов цикл. | ||||||||||
Доказательство: | ||||||||||
Приведем доказательство по индукции по числу вершин в цикле. Пусть — количество вершин в графе.База индукции:
Индукционный переход:
| ||||||||||
Теорема (Следствие): |
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. |
См. также
Источники информации
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы
- Ф. Харари: Теория графов