Верхние и нижние оценки хроматического числа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Нижняя оценка числом внутренней устойчивости)
Строка 2: Строка 2:
 
{{Лемма  
 
{{Лемма  
 
|about = оценка хроматического числа длиной максимального нечётного цикла
 
|about = оценка хроматического числа длиной максимального нечётного цикла
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф и <tex>\Delta(G)</tex> - длина максимального простого цикла графа <tex>G</tex>, <tex>\Delta \ge 3</tex>. Тогда, <tex>\chi(G) \le \Delta(G) + 1</tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф и <tex>\Delta(G)</tex> - длина максимального простого цикла графа <tex>G</tex>, <tex>\Delta \geqslant 3</tex>. Тогда, <tex>\chi(G) \leqslant\Delta(G) + 1</tex>.  
 
|proof=
 
|proof=
 
Опишем на графе следующий алгоритм раскраски:
 
Опишем на графе следующий алгоритм раскраски:
Строка 8: Строка 8:
 
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>.
 
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>.
 
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен.
 
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен.
Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a,b </tex> одного цвета.Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \ge 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \ge 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>.
+
Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a,b </tex> одного цвета.Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>.
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски  нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \le \Delta(G) + 1</tex>
+
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски  нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex>
 
   
 
   
  
Строка 27: Строка 27:
 
{{Лемма  
 
{{Лемма  
 
|about = нижняя оценка
 
|about = нижняя оценка
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с <tex>n</tex> вершинами .Тогда, <tex>n/\alpha \le \chi(G)</tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с <tex>n</tex> вершинами .Тогда, <tex>n/\alpha \leqslant \chi(G)</tex>.  
 
|proof=
 
|proof=
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.Каждое из <tex>V_i</tex> {{---}} независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа <tex>G</tex>, следовательно, они попарно не смежны внутри множества ).
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.Каждое из <tex>V_i</tex> {{---}} независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа <tex>G</tex>, следовательно, они попарно не смежны внутри множества ).
Заметим, что для произвольного <tex>i</tex>, <tex>|V_i| \le \alpha</tex> (т.к <tex>V_i</tex> независимое множество). То есть, <tex>\sum\limits^{\chi}_{i = 1}|V_i| = n \le \chi  \alpha </tex>, следовательно <tex>n / \alpha \le \chi</tex>.
+
Заметим, что для произвольного <tex>i</tex>, <tex>|V_i| \leqslant \alpha</tex> (т.к <tex>V_i</tex> независимое множество). То есть, <tex>\sum\limits^{\chi}_{i = 1}|V_i| = n \leqslant \chi  \alpha </tex>, следовательно <tex>n / \alpha \leqslant \chi</tex>.
 
}}
 
}}
  
Строка 36: Строка 36:
 
{{Лемма  
 
{{Лемма  
 
|about = верхняя оценка
 
|about = верхняя оценка
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с  <tex>m</tex> ребрами.Тогда, <tex>\chi(G) \le \frac{1}{2} +\sqrt{2m + \frac{1}{4}}</tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с  <tex>m</tex> ребрами.Тогда, <tex>\chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}}</tex>.  
 
|proof=
 
|proof=
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет).
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет).
Тогда, <tex>\frac{1}{2}\chi(\chi-1) \le m \Rightarrow (\chi - \frac{1}{2})^2 \le 2m + \frac{1}{4} \Rightarrow \chi(G) \le \frac{1}{2} +\sqrt{2m + \frac{1}{4}} </tex>.
+
Тогда, <tex>\frac{1}{2}\chi(\chi-1) \leqslant m \Rightarrow (\chi - \frac{1}{2})^2 \leqslant 2m + \frac{1}{4} \Rightarrow \chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}} </tex>.
 
}}
 
}}
 
== Нижняя оценка количеством ребер и количеством вершин ==
 
== Нижняя оценка количеством ребер и количеством вершин ==
 
{{Лемма  
 
{{Лемма  
 
|about = нижняя оценка Геллера
 
|about = нижняя оценка Геллера
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами .Тогда,    <tex>\frac{n^2}{n^2 - 2m} \le \chi(G) </tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> - произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами .Тогда,    <tex>\frac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>.  
 
|proof=
 
|proof=
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.
<tex>m \le \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \le \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \le \chi</tex>.
+
<tex>m \leqslant \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \leqslant \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>.
 
}}
 
}}
 
== Полезные материалы ==
 
== Полезные материалы ==

Версия 14:36, 15 ноября 2015

Верхняя оценка длиной максимального нечетного цикла

Лемма (оценка хроматического числа длиной максимального нечётного цикла):
Пусть [math]G(V,E)[/math] - произвольный связный неориентированный граф и [math]\Delta(G)[/math] - длина максимального простого цикла графа [math]G[/math], [math]\Delta \geqslant 3[/math]. Тогда, [math]\chi(G) \leqslant\Delta(G) + 1[/math].
Доказательство:
[math]\triangleright[/math]

Опишем на графе следующий алгоритм раскраски:

  • Из произвольной вершины [math]v[/math] запусти алгоритм поиска в глубину. Пусть [math]T[/math] — дерево обхода глубина графа [math]G[/math] с корнем в вершине [math]v[/math].
  • Произвольную вершину [math]u[/math], покрасим в цвет [math]dist(v,u)[/math] [math] \mod [/math] [math] (\Delta + 1)[/math], где [math]dist(v,u)[/math]— расстояние между вершинами [math]u,v[/math] в графe [math]T[/math].

Докажем от противного, что после выполнения описанного алгоритма граф [math]G[/math] будет правильно раскрашен. Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины [math] a,b [/math] одного цвета.Пусть [math]color(v)[/math] — цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа [math]p[/math], [math]dist(v,p) = color(p) + n(\Delta + 1)[/math] , [math]n \geqslant 0 [/math].Тогда, [math]dist(v,a) - dist(v,b) = k(\Delta + 1)[/math].Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то [math] k \geqslant 1[/math]. То есть, вершины [math]a,b[/math] лежат на простом цикле длины по крайней мере [math]\Delta + 2[/math]. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем [math]\Delta[/math].

Таким образом в графе [math]G[/math] после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из [math]\Delta + 1[/math], то есть [math]G[/math] правильно раскрашен в [math]\Delta + 1[/math] цвет, следовательно [math]\chi(G) \leqslant \Delta(G) + 1[/math]
[math]\triangleleft[/math]

Нижняя оценка числом независимости

Определение:
Подмножество [math]S[/math] вершин графа [math]G[/math] называется независимым, если любые две вершины из [math]S[/math] не смежны в [math]G[/math]


Определение:
Число независимости [math]\alpha(G)[/math] графа [math]G(V,E)[/math][math]max \{|S|:S \in V[/math] и S независимо в G[math]\}[/math]
Лемма (нижняя оценка):
Пусть [math]G(V,E)[/math] - произвольный связный неориентированный граф с [math]n[/math] вершинами .Тогда, [math]n/\alpha \leqslant \chi(G)[/math].
Доказательство:
[math]\triangleright[/math]

Пусть, [math]V_1,V_2...V_\chi[/math] множеств вершин окрашенных в соответствующие цвета при правильно покраски графа [math]G[/math].Каждое из [math]V_i[/math] — независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа [math]G[/math], следовательно, они попарно не смежны внутри множества ).

Заметим, что для произвольного [math]i[/math], [math]|V_i| \leqslant \alpha[/math] (т.к [math]V_i[/math] независимое множество). То есть, [math]\sum\limits^{\chi}_{i = 1}|V_i| = n \leqslant \chi \alpha [/math], следовательно [math]n / \alpha \leqslant \chi[/math].
[math]\triangleleft[/math]

Верхняя оценка количеством ребер

Лемма (верхняя оценка):
Пусть [math]G(V,E)[/math] - произвольный связный неориентированный граф с [math]m[/math] ребрами.Тогда, [math]\chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}}[/math].
Доказательство:
[math]\triangleright[/math]

Пусть, [math]V_1,V_2...V_\chi[/math] множеств вершин окрашенных в соответствующие цвета при правильно покраски графа [math]G[/math]. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет).

Тогда, [math]\frac{1}{2}\chi(\chi-1) \leqslant m \Rightarrow (\chi - \frac{1}{2})^2 \leqslant 2m + \frac{1}{4} \Rightarrow \chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}} [/math].
[math]\triangleleft[/math]

Нижняя оценка количеством ребер и количеством вершин

Лемма (нижняя оценка Геллера):
Пусть [math]G(V,E)[/math] - произвольный связный неориентированный граф с [math]n[/math] вершинами и [math]m[/math] ребрами .Тогда, [math]\frac{n^2}{n^2 - 2m} \leqslant \chi(G) [/math].
Доказательство:
[math]\triangleright[/math]

Пусть, [math]V_1,V_2...V_\chi[/math] множеств вершин окрашенных в соответствующие цвета при правильно покраски графа [math]G[/math].

[math]m \leqslant \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \leqslant \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi[/math].
[math]\triangleleft[/math]

Полезные материалы