Использование обхода в глубину для поиска мостов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Лемма)
Строка 56: Строка 56:
 
         ребро <tex>(v, u)</tex> — мост
 
         ребро <tex>(v, u)</tex> — мост
  
==Источники==
+
==См. также==
# [http://e-maxx.ru/algo/bridge_searching  Сайт e-maxx]
+
*[[Обход в глубину, цвета вершин]]
# [http://en.wikipedia.org/wiki/Bridge_(graph_theory)  Свободная энциклопедия - Википедия]
+
*[[Лемма о белых путях]]
# [http://rain.ifmo.ru/cat/view.php/vis/graph-general/biconnected-components-2005| Визуализация поиска мостов]
+
==Источники информации==
==Литература==
+
* [http://e-maxx.ru/algo/bridge_searching  Сайт e-maxx]
''Седжвик Р.'' Фундаментальные алгоритмы на C++. Часть 5: Алгоритмы на графах. Пер. с англ. — СПб.: ООО «ДиаСофтЮП», 2002. — С. 123-128
+
* [http://en.wikipedia.org/wiki/Bridge_(graph_theory)  Свободная энциклопедия - Википедия]
 +
* [http://rain.ifmo.ru/cat/view.php/vis/graph-general/biconnected-components-2005| Визуализация поиска мостов]
 +
* ''Седжвик Р.'' Фундаментальные алгоритмы на C++. Часть 5: Алгоритмы на графах. Пер. с англ. — СПб.: ООО «ДиаСофтЮП», 2002. — С. 123-128
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Обход в глубину]]
 
[[Категория: Обход в глубину]]

Версия 22:36, 24 декабря 2015

Дан неориентированный граф [math] G [/math]. Найти все мосты в [math] G [/math] за время [math] O(|V| + |E|)[/math]

Алгоритм

Теорема:
Пусть [math] T [/math] — дерево обхода в глубину графа [math] G[/math]. Ребро [math] (u, v) [/math] является мостом тогда и только тогда, когда [math] (u, v) \in T[/math] и из вершины [math] v[/math] и любого ее потомка нет обратного ребра в вершину [math] u[/math] или предка [math] u [/math]
Доказательство:
[math]\triangleright[/math]

[math] \Leftarrow[/math]
Удалим [math] (u, v)[/math] из [math] G[/math]. Докажем, что мы не сможем достичь ни одного из предков [math] v [/math] (в частности [math] u [/math]). Докажем этот факт от противного. Пусть это не так, и [math] w[/math] — предпоследняя вершина на пути от [math] v[/math] до ее предка [math]x [/math]. Очевидно, [math] (w, x)[/math] не ребро дерева (в силу единственности пути в дереве). Если [math] (w, x)[/math] — обратное ребро, то это противоречит условию теоремы, так как [math] x[/math] — предок [math] u[/math]. Следовательно мы не достигнем предков [math]v[/math], а значит количество компонент связности увеличилось, поэтому ребро [math](u, v)[/math] является мостом.
[math] \Rightarrow[/math]

Пусть существует удовлетворяющее условию обратное ребро [math](x, w)[/math]. Тогда [math](u, v)[/math] лежит на цикле [math]x \rightsquigarrow v \rightarrow u \rightsquigarrow w \rightarrow x[/math] и не может быть мостом.
[math]\triangleleft[/math]

Функция [math]ret(v)[/math]

Определим функцию [math]ret(v)[/math], где [math]v \in V[/math], как минимум из следущих величин

  • [math]enter(v)[/math] время входа в вершину [math]v [/math]
  • [math]enter(x)[/math], где [math]x[/math] — потомок [math]v[/math]
  • [math]enter(x)[/math], где [math](w, x)[/math] — обратное ребро, а [math]w[/math] — потомок [math]v[/math] (в нестрогом смысле)

Лемма

Лемма:
Ребро [math](u, v)[/math] является мостом тогда и только тогда, когда [math](u, v)[/math] принадлежит дереву обхода в глубину и [math]ret(v) \gt enter(u)[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим вершину [math]v[/math] или её потомка. Из нее есть обратное ребро в предка [math]v[/math] тогда и только тогда, когда найдется такой сын [math]t[/math], что [math]ret[t] \le enter[v][/math]. Если [math]ret[t] = enter[v][/math], то найдется обратное ребро, приходящее точно в [math]v[/math]. Если же [math]ret[t] \lt enter[v][/math], то это означает наличие обратного ребра в какого-либо предка вершины [math]v[/math].

Таким образом, если для текущего ребра [math](v, t)[/math] (принадлежащего дереву поиска) выполняется [math]ret[t] \gt enter[v][/math], то это ребро является мостом; в противном случае оно мостом не является.
[math]\triangleleft[/math]


Утверждение:
[math]ret(v)[/math] = [math]\min([/math] [math]enter(v) [/math], [math]enter(p)[/math], [math]ret(u)[/math] [math]) [/math], где
[math](v, p)[/math] — обратное ребро,
[math](v, u)[/math] — ребро дерева
[math]\triangleright[/math]
В скобах у вершины [math]u[/math] указаны [math]enter[u][/math] и [math]ret[u][/math]. Мостами будут красные ребра

1)[math]enter(v) [/math]
По определению функции [math]ret[/math]
2)[math]enter(p)[/math], [math](v, p)[/math] — обратное ребро
[math]p[/math] достижима из [math]v[/math] по одному обратному ребру, значит величина [math]ret(v)[/math] не больше [math]enter(p)[/math]
3)[math]ret(u)[/math], [math]u[/math] — потомок [math]v[/math]

Так как вершина [math]u[/math] — потомок [math]v[/math], то обратное ребро из ее поддерева является обратным ребром из поддерева [math]v[/math]
[math]\triangleleft[/math]

Псевдокод

dfs([math] v [/math])
  [math] time \leftarrow time + 1[/math]
  [math]enter[v] \leftarrow time[/math]
  [math]ret[v] \leftarrow time [/math]
  for всех [math]u[/math] смежных с [math]v[/math]
    if [math](v, u)[/math] — обратное ребро
      [math]ret[v] \leftarrow \min(ret[v], enter[u])[/math]
    if вершина [math]u[/math] — белая
      dfs(u)
      [math] ret[v] \leftarrow \min(ret[v], ret[u]) [/math]
      if [math]ret[u] \gt  enter[v][/math] 
        ребро [math](v, u)[/math] — мост

См. также

Источники информации