Модуль непрерывности функции — различия между версиями
(→Свойства модулей непрерывности) |
(→Теорема о выпуклом модуле непрерывности) |
||
| Строка 70: | Строка 70: | ||
|proof= | |proof= | ||
Требуется показать, что: | Требуется показать, что: | ||
| − | :<tex>\beta f(t_1) + (1 - \beta) f(t_2) \le f(\beta t_1 + (1 - \beta) t_2), \ \beta \in [0; 1]</tex><br /> | + | :<tex>\beta f(t_1) + (1 - \beta) \cdot f(t_2) \le f(\beta t_1 + (1 - \beta) \cdot t_2), \qquad \beta \in [0; 1]</tex><br /> |
Так как все функции семейства выпуклы вверх, то для любого <tex>\alpha \in A</tex> верно: | Так как все функции семейства выпуклы вверх, то для любого <tex>\alpha \in A</tex> верно: | ||
| − | :<tex>\beta f_{\alpha}(t_1) + (1 - \beta) f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | + | :<tex>\beta f_{\alpha}(t_1) + (1 - \beta) \cdot f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) \cdot t_2)</tex>.<br /> |
Но по определению <tex>f(t) \le f_{\alpha}(t)</tex>, следовательно, | Но по определению <tex>f(t) \le f_{\alpha}(t)</tex>, следовательно, | ||
| − | :<tex>\beta f(t_1) + (1 - \beta) f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | + | :<tex>\beta f(t_1) + (1 - \beta) \cdot f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) \cdot t_2)</tex>.<br /> |
Переходя в правой части неравенства к нижней грани множества <tex>F</tex>, получаем искомое неравенство. | Переходя в правой части неравенства к нижней грани множества <tex>F</tex>, получаем искомое неравенство. | ||
}} | }} | ||
| Строка 83: | Строка 83: | ||
|statement= | |statement= | ||
Пусть <tex>\omega \in \Omega</tex>. Тогда существует <tex>\omega^* \in \Omega^*</tex> такая, что <tex>\forall \lambda, t \ge 0</tex> | Пусть <tex>\omega \in \Omega</tex>. Тогда существует <tex>\omega^* \in \Omega^*</tex> такая, что <tex>\forall \lambda, t \ge 0</tex> | ||
| − | :<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex> | + | :<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \cdot \omega(t)</tex> |
|proof= | |proof= | ||
| − | По свойству 2 имеем <tex>\omega(\lambda t) \le (1 + \lambda) \omega (t)</tex> для всех <tex>\lambda</tex> и <tex>t \ | + | По свойству 2 имеем <tex>\omega(\lambda t) \le (1 + \lambda) \cdot \omega (t)</tex> для всех <tex>\lambda</tex> и <tex>t \ge 0</tex>. Обозначим <tex>u = \lambda t</tex>, тогда <tex>\lambda = \frac ut</tex>. |
| − | Перепишем равенство | + | Перепишем равенство <tex>\omega(u) \le (1 + \frac ut) \cdot \omega (t)</tex>. Определим теперь функцию <tex>\omega^*(u) = \inf\limits_{t > 0}\,(1 + \frac ut)\cdot\omega(t)</tex>. |
| − | Рассмотрим семейство функций <tex> \tilde \omega(u)_t = (1 + \frac ut)\omega(t), t > 0</tex>. Каждая функция из этого семейства выпукла как линейная. Но тогда <tex>\omega^*(u)</tex> выпукла вверх по доказанному выше факту. | + | Рассмотрим семейство функций <tex> \tilde \omega(u)_t = (1 + \frac ut)\cdot\omega(t), t > 0</tex>. Каждая функция из этого семейства выпукла как линейная. Но тогда <tex>\omega^*(u)</tex> выпукла вверх по доказанному выше факту. |
Докажем теперь, что <tex>\omega^*(u)</tex> - модуль непрерывности. Действительно, | Докажем теперь, что <tex>\omega^*(u)</tex> - модуль непрерывности. Действительно, | ||
#<tex>\omega^*</tex> выпукла вверх | #<tex>\omega^*</tex> выпукла вверх | ||
| − | #<tex>\omega^*(0) = \inf\limits_{t > 0}{\omega(t)} = 0</tex> (т. к. <tex>\lim \limits_{t \to +0} \,\omega(t) = 0</tex> ) | + | #<tex>\omega^*(0) = \inf\limits_{t > 0}\,{\omega(t)} = 0</tex> (т. к. <tex>\lim \limits_{t \to +0} \,\omega(t) = 0</tex> ) |
| − | #<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \ | + | #<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \le u_2 \Rightarrow (1 + \frac{u_1}t)\cdot\omega(t) \leq (1 + \frac{u_2}t)\cdot\omega(t)</tex>. Переходя к нижмин граням обеих частей последнего неравенства, получаем <tex>u_1 \le u_2 \Rightarrow \omega^*(u_1) \le \omega^*(u_2)</tex>. |
| − | + | По свойству №2 модулей непрерывности <tex>\omega(u) \le (1 + \frac ut) \cdot \omega (t)</tex>. Рассматривая точные нижние грани обеих частей и используя определение функции <tex>\omega^*(u)</tex>, получим требуемые в условии теоремы неравенства. | |
Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. | Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. | ||
Версия 21:29, 20 ноября 2010
| Определение: |
Функция называется модулем непрерывности, если:
|
Содержание
Свойства модулей непрерывности
| Утверждение (свойство №1): |
верно |
| Доказательство ведется по индукции. Для неравенство тривиально. Пусть утверждение верно для . Тогда , ч. т. д. |
| Утверждение (свойство №2): |
верно |
|
Доказательство: . |
| Утверждение (свойство №3): |
Пусть для некоторой функции выполняются аксиомы 1 и 2 определения, и функция убывает. Тогда - модуль непрерывности. |
|
Видно, что треубется доказать только полуаддитивность. Т. к. , то . Тогда . |
| Утверждение (свойство №4): |
Пусть удовлетворяет аксиомам 1 и 2 определения и является выпуклой вверх. Тогда - модуль непрерывности. |
|
Докажем, опираясь на свойство 3. Покажем, что убывает. |
Примеры
По свойству четыре видно, что можно построить сколь угодно много модулей непрерывности. Например, является модулем непрерывности.
- функция возрастает.
- функция является выпуклой вверх.
Из этого факта следует неравенство
Теорема о выпуклом модуле непрерывности
Класс модулей непрерывности обозначим . Класс выпуклых вверх модулей непрерывности обозначим .
Важное значение имеет теорема о выпуклом модуле непрерывности, которая основывается на следующем факте:
| Утверждение: |
Пусть имеется семейство выпуклых функций . Тогда — также выпуклая функция. |
|
Требуется показать, что: Так как все функции семейства выпуклы вверх, то для любого верно:
Но по определению , следовательно,
|
| Теорема (о выпуклом модуле непрерывности): |
Пусть . Тогда существует такая, что
|
| Доказательство: |
|
По свойству 2 имеем для всех и . Обозначим , тогда . Перепишем равенство . Определим теперь функцию . Рассмотрим семейство функций . Каждая функция из этого семейства выпукла как линейная. Но тогда выпукла вверх по доказанному выше факту. Докажем теперь, что - модуль непрерывности. Действительно,
По свойству №2 модулей непрерывности . Рассматривая точные нижние грани обеих частей и используя определение функции , получим требуемые в условии теоремы неравенства. Итак, построенная нами функция является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. |
Модуль непрерывности функции
Пусть - функция, непрерывная на . Пусть . Положим
- .
Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции .
Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции :
- .
Опеределим , где - класс выпуклых мажорант функции (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству).
Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции .
По доказанной выше теореме получаем следующее следствие:
- , а также: