==Задача==Пусть дано отношение <tex>R</tex> на множестве <tex>X</tex>. Необходимо построить его #перенаправление [[Транзитивное замыкание|транзитивное замыкание]] <tex>\mathrm{TrCl}(R)</tex>.== Алгоритм ==Пусть вершины графа <tex>G=(V,\; E),\; |V| = n</tex> пронумерованы от 1 до <tex>n</tex>. Каждая вершина соответствует элементу множества. А наличие ребра между вершинами означает, что соответствующие элементы множества состоят в отношении. Пусть так же введено булево обозначение <tex>d_{i j}^{k}</tex> для наличия пути (равно true, если есть путь, и false {{---}} в противном случае) от <tex>i</tex> до <tex>j</tex>, который кроме самих вершин <tex>i,\; j</tex> проходит только через вершины <tex>1 \ldots k</tex>(с номерами <tex> \le k </tex>). Тогда существующий путь между <tex>i,\;j</tex>, проходящий через <tex>k</tex> (сначала он идет от <tex>i</tex> до <tex>k</tex>, а потом от <tex>k</tex> до <tex>j</tex>), очевидно, выражается, как <tex>d_{i j}^{k}=d_{i k}^{k-1} \cap d_{k j}^{k-1}</tex> Алгоритм Флойда — Уоршелла последовательно вычисляет все значения <tex>d_{i j}^{k}</tex>, <tex>\forall i,\; j</tex> для <tex>k</tex> от 1 до <tex>n</tex>. Полученные значения <tex>d_{i j}^{n}</tex> являются транзитивным замыканием графа. === Псевдокод === На каждом шаге алгоритм генерирует двумерную матрицу <tex>W</tex>, <tex>w_{ij}=d_{i j}^n</tex>. Матрица <tex>W</tex> содержит транзитивное замыкание графа. Перед работой алгоритма матрица <tex>W</tex> заполняется true или false в зависимости от наличия ребра в графе. for k = 1 to n for i = 1 to n for j = 1 to n W[i][j] = W[i][j] or (W[i][k] and W[k][j]) === Сложность алгоритма ===Три вложенных цикла содержат операцию, исполняемую за константное время.<tex>\sum_{n,\;n,\;n}O(1) = O(n^3),</tex>то есть алгоритм имеет кубическую сложность, при этом простым расширением можно получить также информацию о кратчайших путях — помимо расстояния между двумя узлами записывать матрицу идентификатор первого узла в пути. == Ссылки ==* [http://e-maxx.ru/algo/floyd_warshall_algorithm Реализация алгоритма Флойда на С++]* [http://plagiata.net.ru/?p=57 Реализация алгоритма Флойда на Delphi]* [http://rain.ifmo.ru/cat/data/vis/graph-paths/floyd-warshall-2004/code.jar Визуализатор]* [http://ru.wikipedia.org/wiki/Заглавная_страница Википедия — свободная энциклопедия]