Избыточное кодирование, код Хэмминга — различия между версиями
Glukos (обсуждение | вклад) м (→Определение и устранение ошибок в общем случае) |
Glukos (обсуждение | вклад) (→Определение и устранение ошибок в общем случае) |
||
Строка 30: | Строка 30: | ||
== Определение и устранение ошибок в общем случае == | == Определение и устранение ошибок в общем случае == | ||
− | Пусть <tex>\Sigma</tex> | + | Пусть <tex>\Sigma</tex> — исходный алфавит, <tex>C: \Sigma \to B^m</tex> — кодирование, <tex>B=(0,1)</tex> |
− | <tex>d: B^m,B^m \to R^+</tex> | + | <tex>d: B^m,B^m \to R^+</tex> — [[Расстояние Хэмминга]] между двумя кодами. <br> |
Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex> | Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex> | ||
Тогда легко понять, что код, полученный преобразованием <tex>C</tex> может исправлять <math>~[</math><tex>{d_0-1}\over{2}</tex><math>~]</math> и обнаруживать <tex>[d_0-1]</tex> ошибок. Действительно, при любом натуральном количестве допустимых ошибок <tex>r</tex> любой код <tex>S</tex> образует вокруг себя проколотый шар таких строк <tex>S_i</tex>, что <tex>0<d(S,S_i)\le r</tex>. Если этот шар не содержит других кодов (что выполняется при <tex>r<d_0</tex>) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при <tex>r\le {{d_0-1}\over{2}} </tex>), то попавшую в шар строку <tex>S_i</tex> можно считать ошибочной и тождественно исправить на центр шара — строку <tex>S</tex>. | Тогда легко понять, что код, полученный преобразованием <tex>C</tex> может исправлять <math>~[</math><tex>{d_0-1}\over{2}</tex><math>~]</math> и обнаруживать <tex>[d_0-1]</tex> ошибок. Действительно, при любом натуральном количестве допустимых ошибок <tex>r</tex> любой код <tex>S</tex> образует вокруг себя проколотый шар таких строк <tex>S_i</tex>, что <tex>0<d(S,S_i)\le r</tex>. Если этот шар не содержит других кодов (что выполняется при <tex>r<d_0</tex>) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при <tex>r\le {{d_0-1}\over{2}} </tex>), то попавшую в шар строку <tex>S_i</tex> можно считать ошибочной и тождественно исправить на центр шара — строку <tex>S</tex>. | ||
+ | [[Файл:Ham.png]] | ||
== Ссылки == | == Ссылки == | ||
*[http://en.wikipedia.org/wiki/Hamming_code Hamming code - Wikipedia, the free encyclopedia] | *[http://en.wikipedia.org/wiki/Hamming_code Hamming code - Wikipedia, the free encyclopedia] |
Версия 21:38, 20 ноября 2010
Избыточное кодирование - вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.
Содержание
Код, определяющий одну ошибку
Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x:
, такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.Кодирование Хэмминга
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример
закодируем четыре бита: . Полученный код будет иметь длину 8 бит и выглядеть следующим образом: Рассмотрим табличную визуализацию кода:Как видно из таблицы, даже если один из битов
передался с ошибкой, содержащие его -суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в
бит. Для получения её кода добавим к ней пар бит по следующему принципу:- Первая пара: сумма четных бит и сумма нечетных бит
- Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица
...
- -тая пара: сумма тех бит, в чьем номере -тый бит с конца ноль и сумма тех бит, в чьем номере -тый бит с конца единица
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных
пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар , следовательно мы имеем бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит .Итого, увеличивая код длиной
на , можно обнаружить и исправить одну ошибку.Определение и устранение ошибок в общем случае
Пусть
— исходный алфавит, — кодирование,Расстояние Хэмминга между двумя кодами.
Определим , ,
Тогда легко понять, что код, полученный преобразованием
может исправлять и обнаруживать ошибок. Действительно, при любом натуральном количестве допустимых ошибок любой код образует вокруг себя проколотый шар таких строк , что . Если этот шар не содержит других кодов (что выполняется при ) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при ), то попавшую в шар строку можно считать ошибочной и тождественно исправить на центр шара — строку .