Точка сочленения, эквивалентные определения — различия между версиями
Строка 1: | Строка 1: | ||
− | {{Определение | + | {{Определение (1) |
|definition= | |definition= | ||
'''Точка сочленения''' [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G</tex> {{---}} вершина, принадлежащая как минимум двум [[Отношение вершинной двусвязности#Блоки|блокам]] <tex>G</tex>. | '''Точка сочленения''' [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G</tex> {{---}} вершина, принадлежащая как минимум двум [[Отношение вершинной двусвязности#Блоки|блокам]] <tex>G</tex>. | ||
}} | }} | ||
− | {{Определение | + | {{Определение (2) |
|definition= | |definition= | ||
'''Точка сочленения''' графа <tex>G</tex> {{---}} вершина, при удалении которой в <tex>G</tex> увеличивается число [[Отношение связности, компоненты связности|компонент связности]]. | '''Точка сочленения''' графа <tex>G</tex> {{---}} вершина, при удалении которой в <tex>G</tex> увеличивается число [[Отношение связности, компоненты связности|компонент связности]]. |
Версия 03:45, 30 декабря 2015
Шаблон:Определение (1) Шаблон:Определение (2)
Лемма: |
Определения (1) и (2) эквивалентны. |
Доказательство: |
Пусть вершина принадлежит некоторым блокам и . Вершине инцидентны некоторые ребра и . Ребра и находятся в различных блоках, поэтому не существует двух непересекающихся путей между их концами. Учитывая, что один из путей между концами - путь из в эту же вершину, получаем, что любой путь, соединяющий и , пройдет через . При удалении между и не останется путей, и одна из компонент связности распадется на две. Рассмотрим Пусть принадлежала только одному блоку . Все вершины , смежные с , также лежат в (в силу рефлексивности отношения вершинной двусвязности). Между каждой парой вершин из существует как минимум два вершинно непересекающихся пути. Теперь удалим . Это разрушит путь , но не разрушит любой оставшийся, так как иначе он тоже прошел бы через . — компоненту связности, в которой лежала . Пусть между вершинами существовал путь, проходящий через . Но он проходил также через некоторые вершины из , связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. |
Теорема: |
Следующие утверждения эквивалентны:
|
Доказательство: |
Так как — точка сочленения графа , то граф не связен и имеет по крайней мере две компоненты. Образуем разбиение , отнеся к вершины одной из этих компонент, а к — вершины всех остальных компонент. Тогда любые две вершины и лежат в разных компонентах графа . Следовательно, любой простой путь из в графа содержит . Следует из того, что (2) - частный случай (3). Если принадлежит любому простому пути в , соединяющему и , то в нет простого пути, соединяющего эти вершины в . Поскольку не связен, то — точка сочленения графа . |
Источники информации
- Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009