Рёберное ядро — различия между версиями
(→Критерий существования реберного ядра) |
|||
| Строка 57: | Строка 57: | ||
}} | }} | ||
{{Теорема| | {{Теорема| | ||
| + | id=th2| | ||
| + | statement= | ||
| + | Если оба конца ребра <tex>w \in E(G)</tex> покрыто некоторым минимальным вершинным покрытием, то <tex>w \notin C_1(G)</tex>. | ||
| + | }} | ||
| + | '''Следствие 1''' если <tex>G</tex> имеет минимальное вершинное покрытие, которое не является независимым, то <tex>G \neq C_1(G)</tex>.<br> | ||
| + | '''Следствие 2''' если <tex>G</tex> {{---}} сводимый связный двудольный граф, то <tex>G \neq C_1(G)</tex>. | ||
| + | {{Теорема| | ||
| + | id=th3| | ||
| + | statement= | ||
| + | если <tex>G</tex> имеет непустое реберное ядро, то <tex>C_1(G) \supset G</tex>, <tex>C_1(C_1(G)) = C_1(G)</tex>, а компоненты <tex>C_1(G)</tex> являются несводимыми или полунесводимыми двудольными подграфами <tex>G</tex> | ||
| + | }} | ||
| + | |||
| + | {{Теорема| | ||
| + | id=th4 | | ||
statement= | statement= | ||
<tex>G</tex> и его реберное ядро <tex>C_1(G)</tex> совпадают тогда и только тогда, когда <tex>G</tex> является двудольным и не является сводимым. | <tex>G</tex> и его реберное ядро <tex>C_1(G)</tex> совпадают тогда и только тогда, когда <tex>G</tex> является двудольным и не является сводимым. | ||
}} | }} | ||
Версия 01:54, 12 января 2016
| Определение: |
| Рёберное ядро (англ. core) графа — это подграф графа , порожденный объединением таких независимых множеств , что , где — число вершинного покрытия. |
| Определение: |
| Множество ребер (вершин) называется независимым (англ. independent), если никакие его два элемента не смежны. |
| Определение: |
| Вершинным покрытием (англ. vertex cover) графа называется такое множество его вершин, что у любого ребра в хотя бы одна из вершин лежит в . |
| Определение: |
| числом вершинного покрытия (англ. point-covering number) называется число вершин в наименьшем вершинном покрытии графа . |
Критерий существования реберного ядра
| Определение: |
| Наименьшее вершинное покрытие M графа G с множеством вершим V называется внешним (англ. external vertex cover), если для любого подмножества выполняется неравнство , где . |
| Теорема: |
для произвольного графа следующие утверждения эквивалентны:
(1) имеет не пустое рёберное ядро. |
| Доказательство: |
|
Обозначим минимальное вершинное покрытие как . Пусть . |
В качестве примера рассмотрим граф изображенный на рис. 1 а). Этот граф имеет два наименьших вершинных покрытия: и .
Пусть то . Пусть . Тогда .
Отсюда и . И это верно для любого подмножества . Значит, — внешнее покрытие. Значит и — внешнее покрытие.
Реберное ядро в двудольном графе
Здесь и далее будем рассматривать двудольный граф , в котором обозначим - множество вершин левой доли, - множество вершин правой доли.
| Определение: |
| — полунесводимый граф, если имеет ровно одно вершинное покрытие , такое что или или — пусто |
| Определение: |
| — несводимый граф, если он имеет ровно два наименьших вершинных покрытия и , таких что либо , либо |
| Определение: |
| — сводимый граф если он не является ни полунесводимым, ни сводимым. |
| Теорема: |
Если оба конца ребра покрыто некоторым минимальным вершинным покрытием, то . |
Следствие 1 если имеет минимальное вершинное покрытие, которое не является независимым, то .
Следствие 2 если — сводимый связный двудольный граф, то .
| Теорема: |
если имеет непустое реберное ядро, то , , а компоненты являются несводимыми или полунесводимыми двудольными подграфами |
| Теорема: |
и его реберное ядро совпадают тогда и только тогда, когда является двудольным и не является сводимым. |