Примеры неразрешимых задач: задача о выводе в полусистеме Туэ — различия между версиями
Строка 35: | Строка 35: | ||
Имея этот набор правил можем составить упомянутый выше критерий: программа корректно завершиться на данном на ленте входном слове <tex> u </tex>, если в построенной полусистеме <tex> \langle q_1u \rangle \vDash ^* q_n </tex>. Таким образом из разрешимости этой задачи следовала бы разрешимость задачи останова. Соответсвенно задача о выводе в полусистеме Туэ алгоритмически неразрешима. | Имея этот набор правил можем составить упомянутый выше критерий: программа корректно завершиться на данном на ленте входном слове <tex> u </tex>, если в построенной полусистеме <tex> \langle q_1u \rangle \vDash ^* q_n </tex>. Таким образом из разрешимости этой задачи следовала бы разрешимость задачи останова. Соответсвенно задача о выводе в полусистеме Туэ алгоритмически неразрешима. | ||
}} | }} | ||
+ | |||
+ | == См. также == | ||
+ | * [[m-сводимость]] | ||
+ | * [[Примеры неразрешимых задач: проблема соответствий Поста | Проблема соответствий Поста]] | ||
+ | * [[Примеры неразрешимых задач: задача о замощении | Задача о замощении]] | ||
+ | * [[Неразрешимость исчисления предикатов первого порядка]] | ||
==Примечания== | ==Примечания== |
Версия 16:33, 18 января 2016
Определение: |
Полусистема Туэ (англ. semi-Thue system) — это формальная система, определяемая алфавитом | и конечным множеством подстановок вида , где — слова из .
Подстановка интерпретируется как правило вывода следующим образом:
по , если слово получается путем подстановки вместо какого-то вхождения в .
Вывод
из — цепочка , где каждое получается из некоторой подстановкой.Теорема: |
В полусистеме Туэ задача вывода из слова слово (англ. word problem for semi-Thue systems) неразрешима. |
Доказательство: |
Сведем неразрешимую задачу проблемы останова[1] к нашей. Для этого построим по структуре данной из проблемы останова МТ полусистему Туэ. Пусть — стартовое состояние, — допускающее состояние МТ. Для построение искомой полусистемы будем описывать текущее состояние МТ с помощью строки , где — текущее состояние автомата, — строка, записанная на ленте, и — маркера начала и конца строки соответственно. Пусть — последний символ строки , а — первый символ строки . При этом головка указывает на символ . Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк:
В силу конечности множеств состояний автомата ( ) и алфавита ( ) добавим все подобные правила (представленные выше) в нашу полусистему. Заметим, что в МТ лента у нас бесконечна. Поэтому добавим в нашу систему следующие правила, которые будут эмулировать расширение слова на ленте за счет сдвига маркеров (прим. B — пустой символ ленты) :и для И наконец добавим в наш набор те правила, которые позволят нам из конфигурации, в которой присутствует допускающее состояние , получить уникальное слово. Это необходимо, чтобы мы смогли построить критерий в терминах полуситсемы Туэ того, что из стартовой конфигураций наша программа корректно завершается. При этом пусть это уникальное состоит лишь из символа допускающего состояния . Таким образом, имеем следующие правила:Имея этот набор правил можем составить упомянутый выше критерий: программа корректно завершиться на данном на ленте входном слове и для , если в построенной полусистеме . Таким образом из разрешимости этой задачи следовала бы разрешимость задачи останова. Соответсвенно задача о выводе в полусистеме Туэ алгоритмически неразрешима. |
См. также
- m-сводимость
- Проблема соответствий Поста
- Задача о замощении
- Неразрешимость исчисления предикатов первого порядка
Примечания
- ↑ Пример использования теоремы о рекурсии