Укладка графа на плоскости — различия между версиями
(→См. также) |
|||
Строка 50: | Строка 50: | ||
Все вершины произвольного графа <tex>G</tex> помещаем в различных точках координатной оси <tex>OX</tex>. Рассмотрим пучок плоскостей, проходящих через ось <tex>OX</tex>, и зафиксируем <tex>|E|</tex> различных таких плоскостей. Теперь каждое ребро <tex>(u, v)</tex> изобразим полуокружностью, проходящей в соответствующей плоскости через вершины <tex>u, v</tex>. Ясно, что различные ребра не будут пересекаться кроме как в общих вершинах. | Все вершины произвольного графа <tex>G</tex> помещаем в различных точках координатной оси <tex>OX</tex>. Рассмотрим пучок плоскостей, проходящих через ось <tex>OX</tex>, и зафиксируем <tex>|E|</tex> различных таких плоскостей. Теперь каждое ребро <tex>(u, v)</tex> изобразим полуокружностью, проходящей в соответствующей плоскости через вершины <tex>u, v</tex>. Ясно, что различные ребра не будут пересекаться кроме как в общих вершинах. | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
==См. также== | ==См. также== |
Версия 17:31, 18 января 2016
|
Это свойство позволяет в некоторых случаях просто доказывать непланарность некоторых графов, например непланарность . и Понятно, что любой граф, содержащий подграф или непланарен. Оказывается, верно и обратное утверждение, но для его формулировки потребуется вспомогательное определение: |
Определение: |
Введем отношение |
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных и : теорема Понтрягина-Куратовского.
Теорема: |
В трехмерном евклидовом пространстве любой граф укладывается. |
Доказательство: |
Все вершины произвольного графа | помещаем в различных точках координатной оси . Рассмотрим пучок плоскостей, проходящих через ось , и зафиксируем различных таких плоскостей. Теперь каждое ребро изобразим полуокружностью, проходящей в соответствующей плоскости через вершины . Ясно, что различные ребра не будут пересекаться кроме как в общих вершинах.
См. также
Примечания
- ↑ Жордановыми кривыми, неформально говоря, называют кривые без самопересечений, которые можно «нарисовать одним росчерком пера».
Источники информации
- Асанов М, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы
- Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — С. 126. — ISBN 978-5-397-00622-4.