Двоичный каскадный сумматор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Схема)
(Ссылки)
Строка 57: Строка 57:
  
  
== Ссылки ==
+
== Источники информации ==
* [http://rain.ifmo.ru/cat/view.php/vis/arithmetics/binary-addition-2002/algorithm Дискретная математика: алгоритмы]
+
* [http://bookfi.net/book/556972  Е. Угрюмов "Цифровая схемотехника" 2001г.]
* [http://en.wikipedia.org/wiki/Adder_(electronics) Wikipedia]
+
 
 +
* [http://bookfi.net/book/532753  Дк. Ф. Уэйкерли "Проектирование цифровых устройств, том 1." 2002г.]
 +
 
 +
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
 +
 
 +
 
 +
== См. так же ==
 +
*[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%B0%D1%81%D0%BA%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D1%81%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80 Каскадный сумматор]
  
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Схемы из функциональных элементов]]
 
[[Категория:Схемы из функциональных элементов]]

Версия 23:44, 18 января 2016

Определение:
Двоичный каскадный сумматор — цифровая схема, осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса.


Принцип работы

Используемые обозначения: [math]X_{i}, Y_{i}[/math][math]i[/math]-ый разряд суммируемых чисел, [math]C_{i}, C_{i+1}[/math] — биты переноса, [math]F_{i}[/math] — результат сложения.

Рассмотрим один элемент линейного каскадного сумматора - Ripple-carry adder. В некоторых случаях бит переноса [math]C_{i+1}[/math] зависит только от значений [math]X_{i}[/math] и [math]Y_{i}[/math]:

  • если [math]X_{i} = Y_{i} = 1[/math], то [math]C_{i+1} = 1[/math]
  • если [math]X_{i} = Y_{i} = 0[/math], то [math]C_{i+1} = 0[/math]

Иначе ([math]X_i \neq Y_i[/math]) бит переноса не изменяется, то есть [math]C_{i + 1} = C_i[/math].

Три случая называются следующим образом:

  • Generate — "порождение" переноса
  • Kill — "уничтожение" переноса
  • Propagate — "проталкивание" переноса

Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком [math]\otimes[/math] и построим таблицу значений (в столбце первый аргумент, в строке — второй):

Пример композиции
[math]\otimes[/math] k p g
k k k g
p k p g
g k g g

Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия [math]x[/math] выполняется равенство [math]x \otimes p = x[/math], то функцию от нескольких действий можно определить как "последнее не [math]p[/math]".

Схема

Схема двоичного каскадного сумматора

Сумматор состоит из двух частей. Первая часть — это группа полных сумматоров, вычисляющих ответ. Вторая часть — дерево отрезков, с помощью которого вычисляется бит переноса.

Обозначения

  • [math]+ [/math] — полный сумматор, вычисляет результат сложения.
  • [math]\bigotimes[/math] — блок вычисления композиции двух переносов.
  • [math]\bigodot[/math] — блок вычисления [math]C_{i}[/math], старшего бита сумматора.

Схемная сложность

Дерево отрезков вычисляет биты переноса за [math]O(\log N)[/math], оставшиеся действия выполняются за [math]O(1)[/math]. Суммарное время работы — [math]O(\log N)[/math].


Источники информации


См. так же