Матричный умножитель — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См также)
(Схема)
Строка 18: Строка 18:
 
[[Файл:Mult_3.png|700px|right|thumb|Схема матричного умножителя]]
 
[[Файл:Mult_3.png|700px|right|thumb|Схема матричного умножителя]]
 
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх {{---}} разрядных чисел приведена на рисунке.  
 
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх {{---}} разрядных чисел приведена на рисунке.  
Формирование частичных произведений осуществляется посредством логических элементов <tex>\wedge</tex>.
+
Формирование частичных произведений осуществляется посредством логических элементов <tex>\&</tex>.
 
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата.
 
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата.
 
Разрядность результата {{---}} <tex>l</tex> определяется разрядностью множителя {{---}} <tex>n</tex> и множимого {{---}} <tex>k</tex>:  
 
Разрядность результата {{---}} <tex>l</tex> определяется разрядностью множителя {{---}} <tex>n</tex> и множимого {{---}} <tex>k</tex>:  

Версия 17:04, 19 января 2016

Принцип работы

Умножение в бинарной системе

Умножение в столбик

Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое — [math]k[/math] разрядное, а множитель — [math]n[/math] разрядный, то для формирования произведения требуется вычислить [math]n[/math] частичных произведений и сложить их между собой.

Вычисление частичных произведений

В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами [math]\wedge[/math] — конъюнкторами. Каждое частичное произведение ([math]m_i[/math]) — это результат выполнения [math]k[/math] логических операции [math]\wedge[/math] ( между текущим [math]i ( i=1..n)[/math] разрядом множителя и всеми [math]k[/math] разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:

[math]m_i = 2^{i - 1} (a \wedge b_i), [/math] [math](i=1..n)[/math]

Суммирование частичных произведений

На этом этапе происходит сложение всех частичных произведений [math] m [/math].

Схема

Схема матричного умножителя

Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов [math]\&[/math]. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — [math]l[/math] определяется разрядностью множителя — [math]n[/math] и множимого — [math]k[/math]:

[math] l=n+k [/math].


Все конъюнкторы работают параллельно. Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора. В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом. Время выполнения операции умножения определяется временем распространения переносов до выходного разряда [math] p8 [/math].

Матричный умножитель — Binary multiplier

Если внимательно посмотреть на схему умножителя, то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа [math]A[/math] и числа [math]B[/math]. В точках пересечения этих проводников находятся логические элементы [math]\wedge[/math]. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.

Схемная сложность

Частичные произведения вычисляются за [math]n[/math] шагов. Сложение с вычислением переносов включает [math]n - 1[/math] шаг. Последнее сложение можно выполнить за [math]O(\log n)[/math].

В итоге суммарное время работы:

[math]O(n) + O(n) + O(\log n) = O(n) [/math]

Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.

Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.

Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает [math]O(\log n)[/math].

См. также

Источники информации