Метод генерации случайной перестановки, алгоритм Фишера-Йетса — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Решение)
(Решение)
Строка 9: Строка 9:
 
Следующий алгоритм решает задачу:
 
Следующий алгоритм решает задачу:
 
   '''int *a''' randomPermutation('''int *a''') // '''*a''' - указатель на массив типа '''int''' длины '''n'''
 
   '''int *a''' randomPermutation('''int *a''') // '''*a''' - указатель на массив типа '''int''' длины '''n'''
     '''for''' i = 1 '''to''' n
+
     '''for''' i = n - 1 '''to''' 0
 
       j = random(1..i)
 
       j = random(1..i)
 
       swap(a[i], a[j])
 
       swap(a[i], a[j])

Версия 19:15, 22 января 2016

Тасование Фишера–Йетса (названо в честь Рональда Фишера (Ronald Fisher) и Франка Йетса (Frank Yates)) – алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Основная процедура тасования Фишера–Йетса аналогична случайному вытаскиванию записок с числами из шляпы или карт из колоды, один элемент за другим, пока элементы не кончатся. Алгоритм обеспечивает эффективный и строгий метод таких операций, гарантирующий несмещённый результат.

Постановка задачи

Необходимо сгенерировать случайную перестановку из [math] n [/math] чисел с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.

Решение

Пусть

  • [math]\mathtt{random(1..i) }[/math] генерирует случайное число в интервале [math] [1;\; i] [/math]

Следующий алгоритм решает задачу:

 int *a randomPermutation(int *a) // *a - указатель на массив типа int длины n
   for i = n - 1 to 0
     j = random(1..i)
     swap(a[i], a[j])
 return a

Обоснование

Проведем доказательство по индукции. Всего перестановок [math] n! [/math], поэтому вероятность каждой из них должна быть равна [math] \frac {1}{n!}[/math]. Показажем, что на каждом [math]i[/math]-ом шаге цикла любая перестановка из первых [math]i[/math] элементов равновероятна.

  • при [math] i = 1 [/math] перестановка всего одна, и, очевидно, что база верна
  • пусть при [math] i = k - 1 [/math] каждая перестановка первых [math]i[/math] элементов равновероятна, то есть вероятность каждой отдельно взятой перестановки на [math]i[/math]-ом шаге цикла равна [math] \frac {1}{(k-1)!}[/math]
при [math] i = k [/math]:
[math] a = \{ a_{1}, a_{2}, ..., a_{k-1}, k, ... \} [/math]
после [math]swap(i, random(1..i))[/math] вероятность какого-то числа оказаться на [math]k[/math]-ом месте равна [math]\frac{1}{k}[/math]. Вероятность же какой-то перестановки первых [math](k-1)[/math] элементов при известном [math]a_{k}[/math] останется [math] \frac {1}{(k-1)!}[/math], что в результате дает, что вероятность перестановки первых [math]k[/math] элементов равна [math] \frac {1}{k!}[/math]


Другой способ обоснования заключается в том, что каждая перестановка в результате работы этого алгоритма может получиться ровно одним способом, причем всегда ровно за [math] n [/math] шагов, таким образом автоматически получается, что все [math] n![/math] перестановок равновероятны.

Неправильные способы реализации

Небольшая модификация этого алгоритма, может резко сказаться на его корректности. Например, следующие два алгоритма работают неправильно:

 for i = 1 to n
   swap(i, random(1..n))
 for i = 1 to n
   swap(random(1..n), random(1..n))

В самом деле: число способов сгенерировать последовательность в первом случае равно [math]n^n[/math], в то время как существует всего [math] n![/math] возможных перестановок из [math] n[/math] элементов. Поскольку [math] n^n[/math] никогда не может делиться на [math] n![/math] без остатка при [math] n \gt 2[/math] (так как [math] n![/math] делится на число [math] n - 1[/math] , которое не имеет с [math] n[/math] общих простых делителей), то некоторые перестановки должны появляться чаще, чем другие. Аналогично для второго случая, где число способов сгенерировать последовательность равно уже [math] (n^2)^n[/math].

Примечание

  • Впервые этот алгоритм опубликовали Р.А.Фишер и Ф.Йетс (R.A.Fisher and F. Yates, Statistical Tables (London 1938), Example 12).
  • Нетрудно увидеть, что сложность алгоритма [math] O(n)[/math]

См.также

Источники информации