Метод генерации случайной перестановки, алгоритм Фишера-Йетса — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Применение алгоритма)
(Неправильные способы реализации)
Строка 24: Строка 24:
 
Небольшая модификация этого алгоритма, может резко сказаться на его корректности.  
 
Небольшая модификация этого алгоритма, может резко сказаться на его корректности.  
  
Пример неправильной реализации:
+
===Пример неправильной реализации:===
 
   '''for''' i = n '''downto''' 1
 
   '''for''' i = n '''downto''' 1
 
     swap(i, random(1..n))
 
     swap(i, random(1..n))
 
В данном случае число способов сгенерировать последовательность равно <tex>n^n</tex>, в то время как существует всего <tex> n!</tex> возможных перестановок из <tex> n</tex> элементов. Поскольку <tex> n^n</tex> никогда не может делиться на <tex> n!</tex> без остатка при <tex> n > 2</tex> (так как <tex> n!</tex> делится на число <tex> n - 1</tex> , которое не имеет с <tex> n</tex> общих простых делителей), то некоторые перестановки должны появляться чаще, чем другие.
 
В данном случае число способов сгенерировать последовательность равно <tex>n^n</tex>, в то время как существует всего <tex> n!</tex> возможных перестановок из <tex> n</tex> элементов. Поскольку <tex> n^n</tex> никогда не может делиться на <tex> n!</tex> без остатка при <tex> n > 2</tex> (так как <tex> n!</tex> делится на число <tex> n - 1</tex> , которое не имеет с <tex> n</tex> общих простых делителей), то некоторые перестановки должны появляться чаще, чем другие.
  
Другой пример неправильной реализации:
+
===Другой пример неправильной реализации:===
 
   '''for''' i = n '''downto''' 1
 
   '''for''' i = n '''downto''' 1
 
     swap(random(1..n), random(1..n))
 
     swap(random(1..n), random(1..n))

Версия 05:59, 23 января 2016

Тасование Фишера – Йетса (названо в честь Рональда Фишера (Ronald Fisher) и Франка Йетса (Frank Yates)) — алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Основная процедура тасования Фишера – Йетса аналогична случайному вытаскиванию записок с числами из шляпы или карт из колоды, один элемент за другим, пока элементы не кончатся. Алгоритм обеспечивает эффективный и строгий метод таких операций, гарантирующий несмещённый результат. Время работы алгоритма [math] O(n)[/math]

Применение алгоритма

Задача:

Необходимо сгенерировать случайную перестановку из [math] n [/math] чисел с равномерным распределением вероятности, если в наличии есть функция для генерации случайного
числа в заданном интервале.

Решение:

Пусть

  • [math]\mathtt{random(1..i) }[/math] генерирует случайное число в интервале [math] [1;\; i] [/math]

Следующий алгоритм решает задачу:

 int[] randomPermutation(int[] a)   //   n — длина перестановки 
   for i = n  downto 1
     j = random(1..i)
     swap(a[i], a[j])
 return a

Обоснование

На каждой итерации цикла мы выбираем случайный элемент из всех оставшихся, то есть у нас есть [math] n[/math] способов выбрать [math]1[/math] элемент, [math] n - 1[/math] способов выбрать [math]2[/math] элемент ... [math] 1[/math] способ выбрать последний элемент. Таким образом, последовательность длины [math] n[/math] мы можем получить [math] $$n \times (n - 1) \times \ldots \times 1 = n! $$ [/math] способами, что совпадает с числом различных перестановок длины [math] n[/math]. Это означает, что вероятность выбрать любую перестановку длины [math] n[/math] равна [math] \dfrac{1}{n!}[/math], то есть все перестановки равновероятны.

Неправильные способы реализации

Небольшая модификация этого алгоритма, может резко сказаться на его корректности.

Пример неправильной реализации:

 for i = n downto 1
   swap(i, random(1..n))

В данном случае число способов сгенерировать последовательность равно [math]n^n[/math], в то время как существует всего [math] n![/math] возможных перестановок из [math] n[/math] элементов. Поскольку [math] n^n[/math] никогда не может делиться на [math] n![/math] без остатка при [math] n \gt 2[/math] (так как [math] n![/math] делится на число [math] n - 1[/math] , которое не имеет с [math] n[/math] общих простых делителей), то некоторые перестановки должны появляться чаще, чем другие.

Другой пример неправильной реализации:

 for i = n downto 1
   swap(random(1..n), random(1..n))

Теперь уже число способов сгенерировать последовательность равно [math](n^2)^n[/math]. По той же причине, что и раньше [math] (n^2)^n[/math] не делится на [math] n![/math] без остатка при [math] n \gt 2[/math] ,следовательно некоторые перестановки будут появляться еще чаще.

См.также

Источники информации