Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Идея)
Строка 52: Строка 52:
  
 
Итого получаем время работы <tex>O(F(V, E) \cdot |f|)</tex>.
 
Итого получаем время работы <tex>O(F(V, E) \cdot |f|)</tex>.
 +
 +
==См. также==
 +
*[[Поток минимальной стоимости| Поток минимальной стоимости]]
 +
*[[Использование потенциалов Джонсона при поиске потока минимальной стоимости| Использование потенциалов Джонсона при поиске потока минимальной стоимости]]
 +
 +
==Источники информации==
 +
*[https://ru.wikipedia.org/wiki/Теорема_Форда_—_Фалкерсона Wikipedia {{---}} Теорема Форда-Фалкерсона]
  
 
== Литература ==
 
== Литература ==

Версия 01:03, 24 января 2016

Теорема Форда-Фалкерсона

Задача о потоке минимальной стоимости состоит в нахождении среди всех потоков данной величины наименее затратного.

Лемма (о представлении потоков):
Пусть [math] f [/math] и [math] g [/math] — потоки в сети [math] G [/math]. Тогда [math] g [/math] можно представить как сумму [math] f + f'[/math], где [math]f'[/math] — поток в остаточной сети [math]G_f[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим произвольное ребро [math] (u, v) [/math] из [math] G [/math]. [math] f'(u, v) = g(u, v) - f(u, v) \leqslant c(u, v) - f(u, v) = c_f(u, v) [/math]. Таким образом, поток через каждое ребро не превосходит пропускной способности остаточной сети.

Антисимметричность и закон сохранения потока проверяются аналогично лемме о сложении потоков.
[math]\triangleleft[/math]
Теорема:
Пусть:
  • [math] G [/math] — сеть с истоком [math] s [/math] и стоком [math] t [/math].
  • [math] f [/math] — поток минимальной стоимости в сети [math] G [/math] среди потоков величины [math] a [/math].
  • [math] P [/math] — путь минимальной стоимости [math] s \leadsto t[/math] в остаточной сети.

Тогда:

[math]\forall \delta : 0 \leqslant \delta \leqslant c_f(P)[/math] поток [math]f + \delta \cdot f_P[/math] — поток минимальной стоимости среди потоков величины [math]a + \delta[/math], где [math]\delta \cdot f_P[/math] — поток величины [math]\delta[/math], проходящий по пути [math]P[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math] g [/math] — поток минимальной стоимости величины [math]a + \delta[/math] в [math]G[/math]. Представим [math] g = f + f'[/math], где [math] f' [/math] — поток в остаточной сети [math]G_f[/math]. Тогда разность [math] g - f[/math] будет потоком в сети [math]G_f[/math] и по лемме о сложении потоков его величина будет равна [math]\delta[/math].

По теореме о декомпозиции [math] g - f[/math] можно представить как сумму элементарных потоков вдоль путей [math]P_i : s \leadsto t[/math] и циклов [math]C_i[/math]. В этом представлении нет отрицательных циклов, иначе прибавление его к [math] f [/math] даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из [math] g [/math] и получим поток меньшей стоимости. Таким образом, [math]p(C_i) = 0[/math] для всех циклов.

Тогда [math]p(g - f) = \sum\limits_{P_i} p(P_i)\cdot c_f(P_i) \geq p(P) \cdot \sum\limits_{P_i}c_f(P_i) \ge p(P) \cdot \delta[/math].

Отсюда [math] p(g) \ge p(f) + p(P) \cdot \delta \ge p(g) [/math] и поток [math]f + \delta \cdot f_P[/math] — минимальный.
[math]\triangleleft[/math]

Алгоритм

В основе алгоритма лежит описанная выше теорема. На каждой итерации алгоритма будем находить путь минимальной стоимости из [math]s[/math] в [math]t[/math] и дополнять поток вдоль этого пути. Выбирать алгоритм для поиска кратчайших путей следует с учетом того, что в ходе алгоритма появляются ребра отрицательного веса.

Реализация

for [math]e \in E[/math] {
     [math]f[e] \leftarrow 0[/math]
}
while (существует путь [math]s \leadsto t[/math] в остаточной сети [math]G_f[/math]) {
      [math]P \leftarrow[/math] кратчайший в смысле стоимости путь [math]s \leadsto t[/math]
      дополнить поток [math]f[/math] вдоль [math]P[/math]
}

Корректность

Непосредственно следует из теоремы Форда-Фалкерсона о потоке минимальной стоимости.

Асимптотика

Каждая итерация выполняется за время работы поиска кратчайшего пути, обозначим его [math]F(V, E)[/math]. В сетях с целочисленной пропускной способностью итераций будет не более [math]|f|[/math].

Итого получаем время работы [math]O(F(V, E) \cdot |f|)[/math].

См. также

Источники информации

Литература

  • Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)