Поток минимальной стоимости — различия между версиями
Murtaught (обсуждение | вклад) м (→Определение задачи) |
(→Определение задачи) |
||
Строка 1: | Строка 1: | ||
== Определение задачи == | == Определение задачи == | ||
Задача о потоке минимальной стоимости состоит в нахождении среди всех [[Определение сети, потока|потоков]] данной величины наименее затратного. | Задача о потоке минимальной стоимости состоит в нахождении среди всех [[Определение сети, потока|потоков]] данной величины наименее затратного. | ||
− | |||
− | |||
− | + | {{Задача | |
+ | |definition = Дано число <tex>f_0</tex> и транспортная сеть <tex>\,G(V,E)</tex> с источником <tex>s \in V</tex> и стоком <tex>t \in V</tex>, где ребра <tex>(u,v) \in E</tex> имеют пропускную способность <tex>\,c(u,v)</tex> и цену <tex>\,p(u,v)</tex>. | ||
+ | Требуется найти поток <tex>f(u, v)</tex>: | ||
:<tex>p(f) = \sum_{u,v \in V, f(u,v)>0} p(u,v) \cdot f(u,v) \rightarrow min </tex>. | :<tex>p(f) = \sum_{u,v \in V, f(u,v)>0} p(u,v) \cdot f(u,v) \rightarrow min </tex>. |
Версия 01:21, 24 января 2016
Определение задачи
Задача о потоке минимальной стоимости состоит в нахождении среди всех потоков данной величины наименее затратного.
Задача: |
Дано число Требуется найти поток :
| и транспортная сеть с источником и стоком , где ребра имеют пропускную способность и цену .
Алгоритмы решения
- Найти любой поток величины Форда-Беллмана. , после чего избавиться от всех циклов отрицательной стоимости в остаточном графе. Чтобы избавиться от цикла, надо пустить по нему максимально возможный поток. Циклы ищутся алгоритмом
- Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости.
- Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма).
Ссылки
- Википедия - Поток минимальной стоимости
- Визуализатор алгоритма нахождения максимального потока минимальной стоимости
- Хабрахабр - Максимальный поток минимальной стоимости
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)