Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину — различия между версиями
(→Пример несходящегося алгоритма) |
(→Пример несходящегося алгоритма) |
||
Строка 45: | Строка 45: | ||
|} | |} | ||
− | Заметим, что после шага <tex>1</tex>, как и после шага <tex>5</tex>, остаточные способности рёбер <tex>e_1</tex>, <tex>e_2</tex> и <tex>e_3</tex> имеют форму <tex>r^n</tex>, <tex>r^{n+1}</tex> и <tex>0</tex>, соответственно, для какого-то натурального <tex>n</tex>. Это значит, что мы можем использовать увеличивающие пути <tex>p_1</tex>, <tex>p_2</tex>, <tex>p_1</tex> и <tex>p_3</tex> бесконечно много раз, и остаточные пропускные способности этих рёбер всегда будут в той же форме. Полный поток после шага <tex>5</tex> равен <tex>1 + 2(r^1 + r^2)</tex>. За бесконечное время полный поток сойдётся к <tex>\textstyle 1 + 2\ | + | Заметим, что после шага <tex>1</tex>, как и после шага <tex>5</tex>, остаточные способности рёбер <tex>e_1</tex>, <tex>e_2</tex> и <tex>e_3</tex> имеют форму <tex>r^n</tex>, <tex>r^{n+1}</tex> и <tex>0</tex>, соответственно, для какого-то натурального <tex>n</tex>. Это значит, что мы можем использовать увеличивающие пути <tex>p_1</tex>, <tex>p_2</tex>, <tex>p_1</tex> и <tex>p_3</tex> бесконечно много раз, и остаточные пропускные способности этих рёбер всегда будут в той же форме. Полный поток после шага <tex>5</tex> равен <tex>1 + 2(r^1 + r^2)</tex>. За бесконечное время полный поток сойдётся к <tex>\textstyle 1 + 2\sum\limits_{i=1}^\infty r^i = 3 + 2r</tex>, тогда как максимальный поток равен <tex>2M + 1</tex>. Таким образом, алгоритм не только работает бесконечно долго, но даже и не сходится к оптимальному решению. |
=== Пример медленной работы алгоритма Форда-Фалкерсона с использованием поиска в глубину по сравнению с реализацией, использующей поиск в ширину === | === Пример медленной работы алгоритма Форда-Фалкерсона с использованием поиска в глубину по сравнению с реализацией, использующей поиск в ширину === |
Версия 14:51, 24 января 2016
Алгоритм Форда-Фалкерсона — алгоритм, решающий задачу нахождения максимального потока в транспортной сети.
Содержание
Идея
Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение обхода в глубину (dfs). Процесс повторяется, пока можно найти увеличивающий путь.
: для всех из . Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать ненулевой поток). В данной статье рассматривается алгоритм, осуществляющий этот поиск с помощьюРеализация
function dfs(u, Cmin): //Cmin - пропускная способность в текущем подпотоке if (u = t) return Cmin u.col = true for (v in u.children) uv = edge(u, v) if (!v.col) and (uv.f < uv.c) delta = dfs(v, min(Cmin, uv.c - uv.f)) if (delta > 0) uv.f += delta uv.backEdge.f -= delta return delta return 0
Оценка производительности
Добавляя поток увеличивающего пути к уже имеющемуся потоку, максимальный поток будет получен, когда нельзя будет найти увеличивающий путь. Тем не менее, если величина пропускной способности — иррациональное число, то алгоритм может работать бесконечно. В целых числах таких проблем не возникает и время работы ограничено
, где — число рёбер в графе, — максимальный поток в графе, так как каждый увеличивающий путь может быть найден за и увеличивает поток как минимум на .
Пример несходящегося алгоритма
Рассмотрим приведённую справа сеть с источником
, стоком , пропускными способностями рёбер , и соответственно , и и пропускной способностью всех остальных рёбер, равной целому числу . Константа выбрана так, что . Мы используем пути из остаточного графа, приведённые в таблице, причём , и .Шаг | Найденный путь | Добавленный поток | Остаточные пропускные способности | ||
---|---|---|---|---|---|
Заметим, что после шага
, как и после шага , остаточные способности рёбер , и имеют форму , и , соответственно, для какого-то натурального . Это значит, что мы можем использовать увеличивающие пути , , и бесконечно много раз, и остаточные пропускные способности этих рёбер всегда будут в той же форме. Полный поток после шага равен . За бесконечное время полный поток сойдётся к , тогда как максимальный поток равен . Таким образом, алгоритм не только работает бесконечно долго, но даже и не сходится к оптимальному решению.Пример медленной работы алгоритма Форда-Фалкерсона с использованием поиска в глубину по сравнению с реализацией, использующей поиск в ширину
При использовании поиска в ширину алгоритму потребуется всего лишь два шага. Дана сеть (Рис. 2).
Благодаря двум итерациям (Рис. 3 и Рис. 4)
рёбра
насытились лишь на . Конечная сеть будет получена ещё через 1998 итераций (Рис. 5).См. также
Источники информации
- Википедия: Алгоритм Форда — Фалкерсона
- Томас Х. Кормен и др. Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1