Метод Фибоначчи — различия между версиями
(Новая страница: «==Метод Фибоначчи== '''Метод Фибоначчи''' (англ. ''Fibonacci method'') {{---}} это улучшение реализации [[П...») |
(нет различий)
|
Версия 04:23, 27 января 2016
Метод Фибоначчи
Метод Фибоначчи (англ. Fibonacci method) — это улучшение реализации поиска с помощью золотого сечения, служащего для нахождения минимума/максимума функции. Подобно методу золотого сечения, он требует двух вычислений функции на первой итерации, а на каждой последующей только по одному. Однако этот метод отличается от метода золотого сечения тем, что коэффициент сокращения интервала неопределенности меняется от итерации к итерации.
Описание
Метод основан на последовательности чисел Фибоначчи
, которая определяется следующим образом :
Таким образом, последовательность Фибоначчи имеет вид
Предположим, что на -й итерации интервал неопределенности равен . Рассмотрим две точки и , определяемые следующим образом:, где и заданное общее число вычислений функции.
Новый интервал неопределенности
будет равен и , если . В первом случае, учитывая и полагая , получим.
Во втором случае, учитывая
, получаем.
Таким образом, в обоих случаях длина интервала неопределенности сжимается с коэффициентом
. Покажем, что на той итерации либо , либо , так что требуется только одно новое вычисление функции. Предположим, что . Тогда . Таким образом, используя и заменив на , получаем . Подставив выражение для и заменив на , получим ..
.
Если золотого сечения в методе Фибоначчи требуется, чтобы общее число вычислений (или коэффициент сокращения исходного интервала) было задано заранее. Это объясняется тем, что точки, в которых производятся вычисления, зависят от . Длина интервала неопределенности на -той итерации сжимается с коэффициентом . Следовательно, после итерации, где заданное общее число вычислений функции , длина интервала неопределенности сократится от до .
, то выполнив аналогичные преобразования, получим . Таким образом, в обоих случаях на -й итерации требуется только одно вычисление функции. В отличие от метода