Множества — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отмена правки 5104 участника Rybak (обсуждение))
Строка 7: Строка 7:
 
Множество - первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством».
 
Множество - первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством».
  
В математическом анализе используется «наивная» теория множеств, которая является удобным языком описания фактов. Создана немецким математиком Г. Кантором(1870).
+
В [[Математический анализ 1 курс|математическом анализе]] используется «наивная» теория множеств, которая является удобным языком описания фактов. Создана немецким математиком Г. Кантором(1870).
  
 
<tex>a \in A</tex> (объект а принадлежит множеству А)
 
<tex>a \in A</tex> (объект а принадлежит множеству А)

Версия 09:32, 23 ноября 2010

Эта статья находится в разработке!

Лекция от 06.09.10.

Начальные определения

Множество - первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством».

В математическом анализе используется «наивная» теория множеств, которая является удобным языком описания фактов. Создана немецким математиком Г. Кантором(1870).

[math]a \in A[/math] (объект а принадлежит множеству А)

[math]a \notin A[/math] (объект а не принадлежит множеству А)

Задание множеств

1) Перечислением элементов: [math] A = \{a_1, a_2 ..., a_n, ...\} [/math]

2) Заданием определенного свойства обьектов: [math] A = \{a: P\} [/math] , где P - определенное свойство обьекта а

Операции

  1. [math] A \subset B [/math] (A является подмножеством B, каждый элемент из А также принадлежит В ([math] \forall x: x \in A \Rightarrow x \in B [/math]);
  2. [math] A \cap B [/math] (Пересечение множеств А и В: [math] (x \in A) \wedge (x \in B) [/math]);
  3. [math] A \cup B [/math] (Объединение множеств А и В: [math] (x \in A) \vee (x \in B) [/math]);
  4. [math] B \backslash A [/math] (Разность множеств: [math] (x \in B) \wedge (x \notin A) [/math];
  5. [math] \varnothing [/math] - пустое множество:
  6. [math] A \cup \varnothing = A [/math]
  7. [math] A \cap \varnothing = \varnothing [/math]
  8. [math] \forall A: \varnothing \subseteq A [/math]
  9. [math] \bigcup\limits_{\alpha\in W} A_\alpha[/math] - обьединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
    • [math] \bigcup\limits_{j \in N} A_j = A_1 \cup A_2 \cup [/math] ...
    • [math] \bigcup\limits_{0 \lt x \lt 1} A_x [/math]
    • [math] \bigcup\limits_{\alpha \in W} A_{\alpha} [/math], и так далее..
  10. [math] A \cup B \cup C ... \subseteq U [/math] - "множество всего".
  11. [math]\overline{A} = U [/math] \ [math] A [/math] - дополнение множества А, дополнительное множество к А до U;
Теорема (Де Моргана):
[math]\overline{\bigcup\limits_\alpha A_\alpha} = \bigcap\limits_\alpha \overline{A_\alpha} \\ \overline{\bigcap\limits_\alpha A_\alpha} = \bigcup\limits_\alpha \overline{A_\alpha} [/math]
Доказательство:
[math]\triangleright[/math]
????????
[math]\triangleleft[/math]