Теорема Гринберга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Теорема Гринберга)
м
Строка 1: Строка 1:
 +
== Базовые определения ==
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Версия 22:48, 28 января 2016

Базовые определения

Определение:
Подграф (англ. subgraph) исходного графа — граф, содержащий некое подмножество вершин данного графа и некое подмножество инцидентных им рёбер. По отношению к подграфу исходный граф называется суперграфом.


Определение:
Порождённый подграф (англ. induced subgraph) — подграф, порождённый множеством рёбер исходного графа. Содержит не обязательно все вершины графа, но эти вершины соединены такими же ребрами, как в графе.


Пусть множество вершин графа [math] G [/math] разбито на взаимно дополнительные подмножества [math] X [/math] и [math] Y [/math]. Через [math] J(X, Y) [/math] обозначим множество всех ребер графа [math] G [/math], у каждого из которых один конец лежит в [math] X [/math], а другой — в [math] Y [/math].

Определение:
Если граф [math] G [/math] и порожденные подграфы [math] G[X] [/math] и [math] G[Y] [/math] связны, то множество [math] J(X, Y) [/math] называется бондом графа [math] G [/math]. Подграфы [math] G[X] [/math] и [math] G[Y] [/math] называются торцевыми графами этого бонда. Из приведенного определения следует, что бонд [math] J(X, Y) [/math] должен быть непустым множеством. Если граф [math] G [/math] несвязен, то его бонд определим как бонд какой-либо его компоненты. Заметим, что всякий перешеек графа образует однореберный бонд. Торцевые графы перешейка являются торцевыми графами соответствующего бонда.


Определение:
Гамильтоновым бондом (англ. hamiltonian bond) называется бонд графа [math] G [/math], торцевыми графами которого являются деревья, т.е. бонд, состоящий из [math] p_1(G) + 1 [/math] ребер.


Теорема Гринберга

Теорема (Гринберг):
Пусть связный граф [math] G [/math] имеет гамильтонов бонд [math] H [/math] с торцевыми графами [math] X [/math] и [math] Y [/math]. Пусть [math] f_n^{X} [/math] и [math] f_n^{Y} [/math] — число вершин в графов [math] X [/math] и [math] Y [/math] соответственно, имеющих в [math] G [/math] степень [math] n ~ (n = 1, ~ 2, ~ 3, ~ \ldots) [/math]. Тогда:
[math] \sum\limits_{n=1}^{\infty} (n - 2) (f_n^{X} - f_n^{Y}) = 0 ~~~ \bf{(1)} [/math].
Доказательство:
[math]\triangleright[/math]

Так как торцевые графы являются деревьями, то:

[math] \sum\limits_{n=1}^{\infty} f_n^{X} = |V(X)| = |E(X)| + 1 ~~~ \textbf{(2)} [/math].

Ясно также, что:

[math] \sum\limits_{n=1}^{\infty} n f_n^{X} = |E(H)| + 2|E(X)| ~~~ \textbf{(3)} [/math].

Поэтому:

[math] \sum\limits_{n=1}^{\infty} (n - 2) f_n^{X} = |E(H)| - 2 ~~~ \textbf{(4)} [/math].
Аналогичную формулу получаем для графа [math] Y [/math]. Вычитая ее из (4), приходим к (1).
[math]\triangleleft[/math]

Использование теоремы

Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа [math] G [/math], кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы (1) не делится на 3 и, следовательно, гамильтонова бонда в графе [math] G [/math] не существует. Рисунок 1 иллюстрирует этот простой пример.

Рис. 1

См. также

Источники информации

  • У. Татт. Теория графов. М.: "Мир", 1988. с. 304. ISBN 5-03-001001-7