Дисперсия случайной величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
Строка 4: Строка 4:
 
|id = def1
 
|id = def1
 
|definition =
 
|definition =
'''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D  \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> - случайная величина, а <tex>E</tex> - символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}}
+
'''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D  \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}}
  
 
Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]].
 
Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]].
Строка 19: Строка 19:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Если <tex>\xi</tex> и <tex>\eta</tex> - независимые случайные величины, то: <tex>D(\xi + \eta) = D\xi + D\eta</tex>
+
Если <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины, то: <tex>D(\xi + \eta) = D\xi + D\eta</tex>
 
|proof=
 
|proof=
 
* Из определения:  
 
* Из определения:  
Строка 26: Строка 26:
 
: <tex> = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))</tex>
 
: <tex> = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))</tex>
  
* При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> - независимые случайные величины.
+
* При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины.
 
:Действительно,
 
:Действительно,
  
Строка 40: Строка 40:
 
* Дисперсия суммы двух случайных величин равна:
 
* Дисперсия суммы двух случайных величин равна:
 
*: <tex>\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)</tex>, где <tex>\! \text{Cov}(\xi, \psi)</tex> {{---}} их [[Ковариация случайных величин|ковариация]];
 
*: <tex>\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)</tex>, где <tex>\! \text{Cov}(\xi, \psi)</tex> {{---}} их [[Ковариация случайных величин|ковариация]];
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> - константа. В частности, <tex>D(-\xi) = D\xi;</tex>
+
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi;</tex>
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> - константа.
+
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа.
 
== Пример ==
 
== Пример ==
 
Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии.
 
Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии.

Версия 22:27, 26 февраля 2016

Определение

Определение:
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: [math]D \xi = E(\xi -E\xi)^2 [/math], где [math]\xi[/math] — случайная величина, а [math]E[/math] — символ, обозначающий математическое ожидание


Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.

Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.

Замечания

Линейность

Теорема:
Если [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины, то: [math]D(\xi + \eta) = D\xi + D\eta[/math]
Доказательство:
[math]\triangleright[/math]
  • Из определения:
    [math]D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =[/math]
[math] = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))[/math]
  • При этом, [math]E\xi\eta - E\xi E\eta = 0[/math], так как [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины.
Действительно,
[math]E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =[/math]
[math] {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta[/math]
[math]\triangleleft[/math]

Свойства

  • Дисперсия любой случайной величины неотрицательна: [math]D\xi \geqslant 0;[/math]
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: [math]Da = 0;[/math]
  • Дисперсия суммы двух случайных величин равна:
    [math]\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)[/math], где [math]\! \text{Cov}(\xi, \psi)[/math] — их ковариация;
  • [math]D (a\xi) = a^2D\xi[/math], где [math]a[/math] — константа. В частности, [math]D(-\xi) = D\xi;[/math]
  • [math]D(\xi+b) = D\xi[/math], где [math]b[/math] — константа.

Пример

Рассмотрим простой пример вычисления математического ожидания и дисперсии.

Найдем математическое ожидание и дисперсию числа очков, выпавших на кубике с первого броска.

[math] \xi(i) = i [/math]

Вычислим математическое ожидание: [math]E\xi = \sum \xi(\omega)p(\omega) = 1\cdot 1/6+2\cdot 1/6 \dots +6\cdot 1/6 = 3.5[/math]

Вычислим дисперсию: [math]D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9[/math]

Источники

  • Дискретный анализ, Романовский И. В.