Дисперсия случайной величины — различия между версиями
(→Определение) |
|||
Строка 4: | Строка 4: | ||
|id = def1 | |id = def1 | ||
|definition = | |definition = | ||
− | '''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> - случайная величина, а <tex>E</tex> - символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}} | + | '''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}} |
Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]]. | Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]]. | ||
Строка 19: | Строка 19: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если <tex>\xi</tex> и <tex>\eta</tex> - независимые случайные величины, то: <tex>D(\xi + \eta) = D\xi + D\eta</tex> | + | Если <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины, то: <tex>D(\xi + \eta) = D\xi + D\eta</tex> |
|proof= | |proof= | ||
* Из определения: | * Из определения: | ||
Строка 26: | Строка 26: | ||
: <tex> = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))</tex> | : <tex> = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))</tex> | ||
− | * При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> - независимые случайные величины. | + | * При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины. |
:Действительно, | :Действительно, | ||
Строка 40: | Строка 40: | ||
* Дисперсия суммы двух случайных величин равна: | * Дисперсия суммы двух случайных величин равна: | ||
*: <tex>\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)</tex>, где <tex>\! \text{Cov}(\xi, \psi)</tex> {{---}} их [[Ковариация случайных величин|ковариация]]; | *: <tex>\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)</tex>, где <tex>\! \text{Cov}(\xi, \psi)</tex> {{---}} их [[Ковариация случайных величин|ковариация]]; | ||
− | * <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> - константа. В частности, <tex>D(-\xi) = D\xi;</tex> | + | * <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi;</tex> |
− | * <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> - константа. | + | * <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа. |
== Пример == | == Пример == | ||
Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии. | Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии. |
Версия 22:27, 26 февраля 2016
Определение
Определение: |
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: , где — случайная величина, а — символ, обозначающий математическое ожидание |
Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.
Замечания
- В силу линейности математического ожидания справедлива формула:
Линейность
Теорема: |
Если и — независимые случайные величины, то: |
Доказательство: |
|
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
- Если случайная величина равна константе, то её дисперсия равна нулю:
- Дисперсия суммы двух случайных величин равна:
- ковариация; , где — их
- , где — константа. В частности,
- , где — константа.
Пример
Рассмотрим простой пример вычисления математического ожидания и дисперсии.
Найдем математическое ожидание и дисперсию числа очков, выпавших на кубике с первого броска.
Вычислим математическое ожидание:
Вычислим дисперсию:
Источники
- Дискретный анализ, Романовский И. В.