Дисперсия случайной величины — различия между версиями
Строка 40: | Строка 40: | ||
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex> | * <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex> | ||
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа. | * <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа. | ||
+ | == Связь с центральным моментом == | ||
+ | {{Определение | ||
+ | |id = def1 | ||
+ | |definition=Центральным моментом (англ. ''central moment'') <tex>k</tex>-ого порядка случайной величины <tex>\xi</tex> называется величина <tex>\mu_k</tex>, определяемая формулой <tex>\mu_k = E(\xi -E\xi)^k</tex>. | ||
+ | }} | ||
+ | Заметим, что если <tex>k</tex> равно двум, то <tex>\mu_2 = E(\xi -E\xi)^2 = D \xi</tex>. | ||
+ | Таким образом, дисперсия является центральным моментом второго порядка. | ||
== Пример == | == Пример == | ||
Строка 52: | Строка 59: | ||
Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9</tex> | Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9</tex> | ||
== См. также == | == См. также == | ||
− | [[Ковариация случайных величин|Ковариация случайных величин]] | + | *[[Ковариация случайных величин|Ковариация случайных величин]] |
− | [[Корреляция случайных величин|Корреляция случайных величин]] | + | *[[Корреляция случайных величин|Корреляция случайных величин]] |
== Источники информации == | == Источники информации == | ||
*Дискретный анализ, Романовский И. В. | *Дискретный анализ, Романовский И. В. | ||
*[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Википедия {{---}} Дисперсия случайной величины] | *[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Википедия {{---}} Дисперсия случайной величины] | ||
*[https://en.wikipedia.org/wiki/Variance Wikipedia {{---}} Variance] | *[https://en.wikipedia.org/wiki/Variance Wikipedia {{---}} Variance] | ||
+ | *[http://www.exponenta.ru/educat/class/courses/tv/theme0/3.asp#2 EXPonenta.ru {{---}} Числовые характеристики случайных величин] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Теория вероятности]] | [[Категория: Теория вероятности]] |
Версия 23:20, 26 февраля 2016
Содержание
Определение
Определение: |
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: , где — случайная величина, а — символ, обозначающий математическое ожидание |
Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.
Замечания
- В силу линейности математического ожидания справедлива формула:
Линейность
Теорема: |
Если и — независимые случайные величины, то: |
Доказательство: |
|
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
- Если случайная величина равна константе, то её дисперсия равна нулю:
- Дисперсия суммы двух случайных величин равна:
- ковариация , где — их
- , где — константа. В частности,
- , где — константа.
Связь с центральным моментом
Определение: |
Центральным моментом (англ. central moment) | -ого порядка случайной величины называется величина , определяемая формулой .
Заметим, что если
равно двум, то . Таким образом, дисперсия является центральным моментом второго порядка.Пример
Рассмотрим простой пример вычисления математического ожидания и дисперсии.
Задача: |
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска. |
Вычислим математическое ожидание:
Вычислим дисперсию:
См. также
Источники информации
- Дискретный анализ, Романовский И. В.
- Википедия — Дисперсия случайной величины
- Wikipedia — Variance
- EXPonenta.ru — Числовые характеристики случайных величин