Дисперсия случайной величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 40: Строка 40:
 
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex>
 
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex>
 
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа.
 
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа.
 +
== Связь с центральным моментом ==
 +
{{Определение
 +
|id = def1
 +
|definition=Центральным моментом (англ. ''central moment'') <tex>k</tex>-ого порядка случайной величины <tex>\xi</tex> называется величина <tex>\mu_k</tex>, определяемая формулой <tex>\mu_k = E(\xi -E\xi)^k</tex>.
 +
}}
 +
Заметим, что если <tex>k</tex> равно двум, то <tex>\mu_2 = E(\xi -E\xi)^2 = D \xi</tex>.
 +
Таким образом, дисперсия является центральным моментом второго порядка.
  
 
== Пример ==
 
== Пример ==
Строка 52: Строка 59:
 
Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9</tex>
 
Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9</tex>
 
== См. также ==  
 
== См. также ==  
[[Ковариация случайных величин|Ковариация случайных величин]]
+
*[[Ковариация случайных величин|Ковариация случайных величин]]
[[Корреляция случайных величин|Корреляция случайных величин]]
+
*[[Корреляция случайных величин|Корреляция случайных величин]]
 
== Источники информации ==
 
== Источники информации ==
 
*Дискретный анализ, Романовский И. В.
 
*Дискретный анализ, Романовский И. В.
 
*[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Википедия {{---}} Дисперсия случайной величины]
 
*[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Википедия {{---}} Дисперсия случайной величины]
 
*[https://en.wikipedia.org/wiki/Variance Wikipedia {{---}} Variance]
 
*[https://en.wikipedia.org/wiki/Variance Wikipedia {{---}} Variance]
 +
*[http://www.exponenta.ru/educat/class/courses/tv/theme0/3.asp#2 EXPonenta.ru {{---}} Числовые характеристики случайных величин]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Теория вероятности]]
 
[[Категория: Теория вероятности]]

Версия 23:20, 26 февраля 2016

Определение

Определение:
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: [math]D \xi = E(\xi -E\xi)^2 [/math], где [math]\xi[/math] — случайная величина, а [math]E[/math] — символ, обозначающий математическое ожидание


Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.

Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.

Замечания

Линейность

Теорема:
Если [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины, то: [math]D(\xi + \eta) = D\xi + D\eta[/math]
Доказательство:
[math]\triangleright[/math]
  • Из определения:
    [math]D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =[/math]
[math] = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))[/math]
  • При этом, [math]E\xi\eta - E\xi E\eta = 0[/math], так как [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины.
Действительно,
[math]E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =[/math] [math] {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta[/math]
[math]\triangleleft[/math]

Свойства

  • Дисперсия любой случайной величины неотрицательна: [math]D\xi \geqslant 0[/math]
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
  • Если случайная величина равна константе, то её дисперсия равна нулю: [math]Da = 0[/math]
  • Дисперсия суммы двух случайных величин равна:
    [math]\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)[/math], где [math]\! \text{Cov}(\xi, \psi)[/math] — их ковариация
  • [math]D (a\xi) = a^2D\xi[/math], где [math]a[/math] — константа. В частности, [math]D(-\xi) = D\xi[/math]
  • [math]D(\xi+b) = D\xi[/math], где [math]b[/math] — константа.

Связь с центральным моментом

Определение:
Центральным моментом (англ. central moment) [math]k[/math]-ого порядка случайной величины [math]\xi[/math] называется величина [math]\mu_k[/math], определяемая формулой [math]\mu_k = E(\xi -E\xi)^k[/math].

Заметим, что если [math]k[/math] равно двум, то [math]\mu_2 = E(\xi -E\xi)^2 = D \xi[/math]. Таким образом, дисперсия является центральным моментом второго порядка.

Пример

Рассмотрим простой пример вычисления математического ожидания и дисперсии.

Задача:
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска.

[math] \xi(i) = i [/math]

Вычислим математическое ожидание: [math]E\xi = \sum \xi(\omega)p(\omega) = 1\cdot 1/6+2\cdot 1/6 \dots +6\cdot 1/6 = 3.5[/math]

Вычислим дисперсию: [math]D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9[/math]

См. также

Источники информации