Совпадение множества языков МП-автоматов и контекстно-свободных языков — различия между версиями
YanaZimka (обсуждение | вклад) |
YanaZimka (обсуждение | вклад) |
||
Строка 30: | Строка 30: | ||
=== Пример === | === Пример === | ||
Поскольку доказательство теоремы конструктивно, то используя правила перехода, описанные в ней, можно преобразовать любую КС-грамматику в МП-автомат. Рассмотрим грамматику слов над алфавитом <tex>\{0, 1\}</tex>, в которых одинаковое количество нулей и единиц: | Поскольку доказательство теоремы конструктивно, то используя правила перехода, описанные в ней, можно преобразовать любую КС-грамматику в МП-автомат. Рассмотрим грамматику слов над алфавитом <tex>\{0, 1\}</tex>, в которых одинаковое количество нулей и единиц: | ||
− | : <tex> S \rightarrow 0S1 </tex> | + | : <tex> S \rightarrow 0S1 </tex> |
− | : <tex> S \rightarrow 1S0 </tex> | + | : <tex> S \rightarrow 1S0 </tex> |
− | : <tex> S \rightarrow \varepsilon </tex> | + | : <tex> S \rightarrow \varepsilon </tex> |
Множеством терминалов является <tex>\Sigma = \{0, 1\}</tex>, а нетерминалов {{---}} <tex>N = \{S\}</tex>. Таким образом, стековый алфавит состоит из <tex>0, 1, S</tex>. Функция переходов <tex>\delta</tex> определена следующим образом: | Множеством терминалов является <tex>\Sigma = \{0, 1\}</tex>, а нетерминалов {{---}} <tex>N = \{S\}</tex>. Таким образом, стековый алфавит состоит из <tex>0, 1, S</tex>. Функция переходов <tex>\delta</tex> определена следующим образом: | ||
− | : <tex>\delta(q, \varepsilon, S) = \{(q, 0S1), (q, 1S0), (q, \varepsilon)\}</tex> (в соответствии с первым пунктом построения <tex>\delta</tex>) | + | : <tex>\delta(q, \varepsilon, S) = \{(q, 0S1), (q, 1S0), (q, \varepsilon)\}</tex> (в соответствии с первым пунктом построения <tex>\delta</tex>) |
− | : <tex> \delta(q, 0, 0)= \{(q, \varepsilon)\}</tex>; <tex> \delta(q, 1, 1)= \{(q, \varepsilon)\}</tex> (в соответствии со вторым пунктом построения <tex>\delta</tex>) | + | : <tex> \delta(q, 0, 0)= \{(q, \varepsilon)\}</tex>; <tex> \delta(q, 1, 1)= \{(q, \varepsilon)\}</tex> (в соответствии со вторым пунктом построения <tex>\delta</tex>) |
Получившийся автомат: | Получившийся автомат: | ||
Строка 71: | Строка 71: | ||
=== Пример === | === Пример === | ||
Пусть у нас имеется МП-автомат <tex>A = \langle \{i,e\}, \{Z\}, \{q\}, q, Z, \delta \rangle</tex>, функция <tex>\delta</tex> задана следующим образом: | Пусть у нас имеется МП-автомат <tex>A = \langle \{i,e\}, \{Z\}, \{q\}, q, Z, \delta \rangle</tex>, функция <tex>\delta</tex> задана следующим образом: | ||
− | :<tex>\delta(q, i, Z) = \{(q, ZZ)\}</tex> | + | :<tex>\delta(q, i, Z) = \{(q, ZZ)\}</tex> |
− | :<tex>\delta(q, e, Z) = \{(q, \varepsilon)\}</tex> | + | :<tex>\delta(q, e, Z) = \{(q, \varepsilon)\}</tex> |
[[Файл:Example2.png]] | [[Файл:Example2.png]] | ||
Строка 87: | Строка 87: | ||
* Из <tex>\delta(q,e,Z)=\{(q,\varepsilon)\}</tex> получаем правило вывода <tex>[qZq] \rightarrow e</tex> | * Из <tex>\delta(q,e,Z)=\{(q,\varepsilon)\}</tex> получаем правило вывода <tex>[qZq] \rightarrow e</tex> | ||
Для удобства тройку <tex>[qZq]</tex> можно заменить символом <tex>A</tex>, в таком случае правила вывода в грамматике будут следующие: | Для удобства тройку <tex>[qZq]</tex> можно заменить символом <tex>A</tex>, в таком случае правила вывода в грамматике будут следующие: | ||
− | :<tex>S \rightarrow A</tex> | + | :<tex>S \rightarrow A</tex> |
− | :<tex>A \rightarrow iAA</tex> | + | :<tex>A \rightarrow iAA</tex> |
− | :<tex>A \rightarrow e</tex> | + | :<tex>A \rightarrow e</tex> |
Упростим грамматику, заменив <tex>A</tex> на <tex>S</tex> (очевидно, она не поменяется), и получим в результате <tex>\Gamma = \langle\{i,e\}, \{S\}, S, \{S \rightarrow iSS | e\}\rangle</tex> | Упростим грамматику, заменив <tex>A</tex> на <tex>S</tex> (очевидно, она не поменяется), и получим в результате <tex>\Gamma = \langle\{i,e\}, \{S\}, S, \{S \rightarrow iSS | e\}\rangle</tex> | ||
Версия 22:10, 15 марта 2016
Содержание
Построение МП-автомата по заданной КС-грамматике
Теорема: |
Класс контекстно-свободных языков является подмножеством класса языков, задаваемых автоматами с магазинной памятью , то есть по любой КС-грамматике можно построить МП-автомат, задающий тот же язык, что и исходная грамматика. |
Доказательство: |
Пусть дана КС-грамматика совпадают, достаточно построить автомат с допуском по пустому стеку. . Поскольку классы языков, допускаемых МП-автоматами по допускающему состоянию и по пустому стеку,Построим автомат из одного состояния с входным алфавитом , стековым алфавитом , маркером дна и функцией перехода , определённой ниже. Формально , где задаётся следующим образом:
Покажем, что язык, допускаемый автоматом , совпадает с языком грамматики , то есть что :
|
Пример
Поскольку доказательство теоремы конструктивно, то используя правила перехода, описанные в ней, можно преобразовать любую КС-грамматику в МП-автомат. Рассмотрим грамматику слов над алфавитом
, в которых одинаковое количество нулей и единиц:Множеством терминалов является
, а нетерминалов — . Таким образом, стековый алфавит состоит из . Функция переходов определена следующим образом:- (в соответствии с первым пунктом построения )
- ; (в соответствии со вторым пунктом построения )
Получившийся автомат:
Построение КС-грамматики по МП-автомату
Теорема: |
Класс языков, задаваемых автоматами с магазинной памятью , является подмножеством класса контекстно-свободных языков , то есть по любому МП-автомату можно построить КС-грамматику, задающую тот же язык, что и допускаемый автоматом. |
Доказательство: |
Пусть дан МП-автомат с допуском по пустому стеку . Как отмечалось ранее, предположение о допуске по пустому стеку не умаляет общности. Построим эквивалентную ему КС-грамматику . В качестве нетерминалов будем использовать конструкции вида (где , ), которая неформально означает, что в процессе изменения состояния автомата от до символ удаляется с вершины стека, не затрагивая то, что находится ниже. Также введём стартовый нетерминал . Таким образом, .Правила вывода построим следующим образом:
Нетерминал должен выводить только те строки , которые переводят автомат из состояния в . Формально это можно записать следующим образом: . Докажем это утверждение:
|
Пример
Пусть у нас имеется МП-автомат
, функция задана следующим образом:Так как стековый алфавит
содержит лишь один символ и одно состояние, то в построенной грамматике будет лишь 2 нетерминала:- — стартовый нетерминал.
- — единственная тройка, которую можно собрать из состояний автомата и символов стекового алфавита.
Также грамматика имеет следующие правила вывода:
- Единственной продукцией для является . Но если бы у автомата было состояний, то тут бы имелось и продукций.
- Из того факта, что содержит , получаем правило вывода . Если бы у автомата было состояний, то такой переход порождал бы продукций.
- Из получаем правило вывода
Для удобства тройку
можно заменить символом , в таком случае правила вывода в грамматике будут следующие:Упростим грамматику, заменив
на (очевидно, она не поменяется), и получим в результатеЭквивалентность языков МП-автоматов и КС-языков
Теорема (об эквивалентности языков МП-автоматов и КС-языков): |
Множество языков, допускаемых МП-автоматами, совпадает с множеством контекстно-свободных языков. |
Доказательство: |
Первая теорема гласит, что , а вторая — что . Таким образом, . |
Следствия
Утверждение: |
Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат с одним состоянием. |
Построим КС-грамматику по данному автомату, затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что этот автомат будет иметь одно состояние, что и требовалось доказать. |
Утверждение: |
Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат, в любом переходе которого на стек кладётся не больше двух символов. |
Построим КС-грамматику по данному автомату и приведём её к нормальной форме Хомского. Затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что в нормальной форме Хомского правые части всех правил имеют длину не больше двух, поэтому в любом переходе в полученном автомате на стек кладётся не больше двух символов. |
Утверждение: |
Для любого МП-автомата существует эквивалентный МП-автомат с допуском по пустому стеку без -переходов. |
Построим КС-грамматику по данному автомату, затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что этот автомат не будет иметь | -переходов, что и требовалось доказать.
См. также
Источники информации
- Wikipedia — PDA and context-free languages
- Введение в теорию автоматов, языков и вычислений / Хопкрофт Д., Мотвани Р., Ульман Д. — М.:Издательский дом «Вильямс», 2002. с. 251. — ISBN 5-8459-0261-4