Классы NP, coNP, Σ₁, Π₁ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение: добавил интервики на недетерминированные вычисления, обернул NP в ТеХ)
(Определение: добавил определение Π₁ и переименовал раздел)
Строка 1: Строка 1:
== Определение ==
+
== Определения, связь Σ₁ и NP ==
 
{{Определение
 
{{Определение
 
|definition=<tex>\mathrm{NP}=\!\!\bigcup\limits_{p(n) \in poly}\!\!\operatorname{NTIME}(p(n))</tex>.
 
|definition=<tex>\mathrm{NP}=\!\!\bigcup\limits_{p(n) \in poly}\!\!\operatorname{NTIME}(p(n))</tex>.
Строка 12: Строка 12:
 
}}
 
}}
 
Нестрого говоря, <tex>\mathrm{\Sigma_1}</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором.
 
Нестрого говоря, <tex>\mathrm{\Sigma_1}</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором.
 
+
{{Определение
 +
|definition=<tex>\mathrm{\Pi_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in poly : x\in L\Leftrightarrow\forall y : |y|\le p(|x|), R(x,y)=1\}</tex>.
 +
}}
 +
То есть <tex>\Pi_1</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) нельзя предъявить сертификат длины, ограниченной неким полиномом, опровергающий принадлежность слова языку и проверяемый верификатором. Легко видеть, что <tex>\Pi_1</tex> — множество языков, дополнения к которым лежат в <tex>\Sigma_1</tex>.
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Строка 27: Строка 30:
 
:Пусть <tex>L\in \mathrm{NP}</tex>. Тогда существует недетерминированная программа <tex>q(x)</tex>, разрешающая этот язык. Построим верификатор <tex>R(x,y)</tex>. В качестве сертификата будем использовать последовательность выборов в программе <tex>q</tex>, приводящую к допуску слова (такой сертификат имеет полиномиальную длину, поскольку выборов в <tex>q</tex> может быть сделано не более, чем время ее работы, то есть не более, чем полином). Верификатор будет аналогичен программе <tex>q</tex>, только вместо каждого недетерминированного выбора он будет присваивать значение, указанное в сертификате. Если <tex>x\in L</tex>, то в <tex>q</tex> существует последовательность выборов таких, что <tex>q(x)=1</tex>, следовательно существует и верный сертификат. Если <tex>x\notin L</tex>, то для любой последовательности выборов <tex>q(x)=0</tex>, следовательно подходящего сертификата не существует. Таким образом, <tex>L \in \mathrm{\Sigma_1}</tex>.
 
:Пусть <tex>L\in \mathrm{NP}</tex>. Тогда существует недетерминированная программа <tex>q(x)</tex>, разрешающая этот язык. Построим верификатор <tex>R(x,y)</tex>. В качестве сертификата будем использовать последовательность выборов в программе <tex>q</tex>, приводящую к допуску слова (такой сертификат имеет полиномиальную длину, поскольку выборов в <tex>q</tex> может быть сделано не более, чем время ее работы, то есть не более, чем полином). Верификатор будет аналогичен программе <tex>q</tex>, только вместо каждого недетерминированного выбора он будет присваивать значение, указанное в сертификате. Если <tex>x\in L</tex>, то в <tex>q</tex> существует последовательность выборов таких, что <tex>q(x)=1</tex>, следовательно существует и верный сертификат. Если <tex>x\notin L</tex>, то для любой последовательности выборов <tex>q(x)=0</tex>, следовательно подходящего сертификата не существует. Таким образом, <tex>L \in \mathrm{\Sigma_1}</tex>.
 
}}
 
}}
'''Примечание:''' определение <tex>\mathrm{\Sigma_1}</tex> часто называют также «определением NP на языке сертификатов».
+
'''Примечание:''' определение <tex>\mathrm{\Sigma_1}</tex> часто называют также «определением <tex>\mathrm{NP}</tex> на языке сертификатов», а <tex>\Pi_1</tex>, соответственно, «определением <tex>\mathrm{coNP}</tex> на языке сертификатов».
  
 
== Свойства ==
 
== Свойства ==

Версия 17:54, 24 марта 2016

Определения, связь Σ₁ и NP

Определение:
[math]\mathrm{NP}=\!\!\bigcup\limits_{p(n) \in poly}\!\!\operatorname{NTIME}(p(n))[/math].

То есть [math]\mathrm{NP}[/math] — это множество языков, разрешимых недетерминированной программой за полиномиальное время.

Определение:
[math]\mathrm{coNP} = \{L \bigm| \overline{L} \in \mathrm{NP}\}[/math].

То есть [math]\mathrm{coNP}[/math] — это множество языков, дополнение к которым лежит в [math]\mathrm{NP}[/math].

Определение:
[math]\mathrm{\Sigma_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in poly : x\in L\Leftrightarrow\exists y : |y|\le p(|x|), R(x,y)=1\}[/math].

Нестрого говоря, [math]\mathrm{\Sigma_1}[/math] — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор [math]R(x,y)[/math], а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором.

Определение:
[math]\mathrm{\Pi_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in poly : x\in L\Leftrightarrow\forall y : |y|\le p(|x|), R(x,y)=1\}[/math].

То есть [math]\Pi_1[/math] — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор [math]R(x,y)[/math], а для каждого слова из языка (и только для слова из языка) нельзя предъявить сертификат длины, ограниченной неким полиномом, опровергающий принадлежность слова языку и проверяемый верификатором. Легко видеть, что [math]\Pi_1[/math] — множество языков, дополнения к которым лежат в [math]\Sigma_1[/math].

Теорема:
[math]\mathrm{\Sigma_1}=\mathrm{NP}[/math].
Доказательство:
[math]\triangleright[/math]

[math]\to \quad(\mathrm{\Sigma_1} \subset \mathrm{NP})[/math].

Пусть [math]L \in \mathrm{\Sigma_1}[/math]. Тогда существуют [math]R(x,y)[/math] и полином [math]p[/math] из определения [math]\mathrm{\Sigma_1}[/math]. Построим недетерминированную программу [math]q(x)[/math], разрешающую [math]L[/math].
 q(x):
   y = [math]\{0,1\}^{p(|x|)}[/math]
   return R(x,y)
Если [math]x\in L[/math], то программа сможет «угадать» подходящий сертификат. Если [math]x\notin L[/math], то подходящего сертификата не существует по определению. Таким образом, [math]q[/math] разрешает [math]L[/math], следовательно [math]L\in \mathrm{NP}[/math].

[math]\gets \quad(\mathrm{NP} \subset \mathrm{\Sigma_1})[/math].

Пусть [math]L\in \mathrm{NP}[/math]. Тогда существует недетерминированная программа [math]q(x)[/math], разрешающая этот язык. Построим верификатор [math]R(x,y)[/math]. В качестве сертификата будем использовать последовательность выборов в программе [math]q[/math], приводящую к допуску слова (такой сертификат имеет полиномиальную длину, поскольку выборов в [math]q[/math] может быть сделано не более, чем время ее работы, то есть не более, чем полином). Верификатор будет аналогичен программе [math]q[/math], только вместо каждого недетерминированного выбора он будет присваивать значение, указанное в сертификате. Если [math]x\in L[/math], то в [math]q[/math] существует последовательность выборов таких, что [math]q(x)=1[/math], следовательно существует и верный сертификат. Если [math]x\notin L[/math], то для любой последовательности выборов [math]q(x)=0[/math], следовательно подходящего сертификата не существует. Таким образом, [math]L \in \mathrm{\Sigma_1}[/math].
[math]\triangleleft[/math]

Примечание: определение [math]\mathrm{\Sigma_1}[/math] часто называют также «определением [math]\mathrm{NP}[/math] на языке сертификатов», а [math]\Pi_1[/math], соответственно, «определением [math]\mathrm{coNP}[/math] на языке сертификатов».

Свойства

Теорема:
Пусть [math]L_1,L_2\in \mathrm{NP}[/math]. Тогда:
  1. [math]L_1\cap L_2\in \mathrm{NP}[/math].
  2. [math]L_1\cup L_2\in \mathrm{NP}[/math].
  3. [math]L_1L_2\in \mathrm{NP}[/math].
  4. [math]L_1^*\in \mathrm{NP}[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]p[/math] разрешает [math]L_1[/math], а [math]q[/math] разрешает [math]L_2[/math].

1. Построим программу [math]r[/math], разрешающую [math]L_1\cap L_2[/math]:

r(x):
  return p(x) and q(x)

2. Построим программу [math]r[/math], разрешающую [math]L_1\cup L_2[/math]:

r(x):
  return p(x) or q(x) 

3. Построим программу [math]r[/math], разрешающую [math]L_1L_2[/math]:

r(x):
  n = [math]|[/math]x[math]|[/math]
  mid =? {1 .. n}
  return p(x[1 .. mid]) and q(x[mid+1 .. n])

4. Построим программу [math]r[/math], разрешающую [math]L_1^*[/math]:

r(x):
  n = [math]|[/math]x[math]|[/math]
  prev = 1
  do
    cur =? {prev .. n}
    if not p(x[prev .. cur])
      return false
    prev = cur + 1
  while cur != n
  return true


[math]\triangleleft[/math]

Примеры языков из NP

  • Проблема раскраски вершин графа в [math]k[/math] цветов.
    Разрешается следующей недетерминированной программой за полиномиальное время:
r(G):
  n = [math]|V(G)|[/math]
  c =? [math]\{ 1, \dotsc, k \} ^ n[/math]
  for uv in [math]E(G)[/math]
    if c[u] == c[v]
      return false
  return true
  • Проблема нахождения гамильтонова цикла:
 r(G):
   n = [math]|V(G)|[/math]
   p =? [math]V(G) ^ n[/math]
   for i = 1 to n
     if v[i] not in p
       return false
   p[n + 1] = p[1]
   for i = 1 to n
     if p[i]p[i + 1] not in [math]E(G)[/math]
       return false
   return true

Все эти языки также являются [math]\mathrm{NP}[/math]-полными. По теореме Ладнера, существует язык из [math]\mathrm{NP}[/math], не являющийся [math]\mathrm{NP}[/math]-полным.

Примеры языков из coNP

  • Даны [math]n[/math] целых чисел. Верно ли, что любое их непустое подмножество имеет ненулевую сумму?
  • TAUT: определить, является ли заданная булева формула тавтологией. К этой задаче тривиально сводится дополнение к SAT: если отрицание формулы невыполнимо, то она является тавтологией, и наоборот.

Связь P и NP

Очевидно, что [math]\mathrm{P} \subseteq \mathrm{NP}[/math], так как детерминированные программы можно рассматривать как недетерминированные, в которых не используется недетерминированный выбор. Вопрос о равенстве данных классов до сих пор остается открытым. Были осуществлены различные подходы к разрешению этой задачи: попытка найти редкий [math]\mathrm{NP}[/math]-полный язык; было доказано, что доказательство должно быть нерелятивизующимся; различные попытки найти полиномиальные решения для задач из [math]\mathrm{NPC}[/math]:

Некоторые задачи из [math]\mathrm{P}[/math] очень похожи на задачи из [math]\mathrm{NP}[/math]. В каждой из приведенных ниже пар задач первая разрешима за полиномиальное время, а вторая является [math]\mathrm{NP}[/math]-полной. При этом различие между задачами кажется совершенно незначительным.

См. также