20
правок
Изменения
Нет описания правки
[[Файл:chain4.png|thumb|right|Цепной код для двоичного вектора длиной 4]]'''Цепной код''' — это код, каждый следующий столбец которого получается из предыдущего циклическим сдвигом вверх.
== Алгоритм получения цепного кода для двоичного вектора ==
# Если нет, то записываем его в код, иначе последнюю единицу заменяем на ноль и записываем слово в код.
# Если получено слово из n нулей, то код полностью записан, иначе возвращаемся к шагу 2
Разобьем доказательство на две части:
# Доказательство того, что одно и то же слово встречается в коде не более одного раза.
# Доказательство того, что код перебирает все возможные слова прежде, чем получит слово из n нулей.
====Доказательство второго пункта==== Покажем, что невозможно вернуться к слову из всех нулей, пока не переберем все <math>2^n</math> слов, где n — длина слова. Допустим, мы всё же получили слово из всех нулей раньше, чем перебрали все слова. Тогда разобьём слова, которые не попали в код на две группы: кончающиеся на единицу и кончающиеся на ноль. Докажем, что второй группы группы нет. Рассмотрим слово {abc..yz}0, не попавшее в код, где {abc..yz} — некоторая последовательность единиц и нулей. Заметим, что слово {bc..yz}00 также не в коде. Оно могло быть получено из слов 1{bc..yz}0 и 0{bc..yz}0, одно из которых есть рассматриваемое {abc..yz}0. Но если другое слово и встретилось в коде, то мы бы получили из него {bc..yz}01, следуя алгоритму (причем это слово точно встретится в первый раз). Таким образом, слово {bc..yz}00 точно не в коде. Такую же цепочку рассуждений можно провести и для слова {c..yz}000, и так далее. На n-ом шаге мы бы получили утверждение, что слова из n нулей тоже нет в коде, и пришли бы к противоречию. Заметим, что исходя из третьего и четвертого шагов, все слова вида {abc..yz}1 встречаются строго раньше {abc..yz}0, которые точно записаны в код. Таким образом, слов, не попавших в код, нет.