Задача о наибольшей возрастающей подпоследовательности — различия между версиями
Строка 11: | Строка 11: | ||
<code> | <code> | ||
lis = 0 // длина НВП | lis = 0 // длина НВП | ||
− | a = | + | a = (n, 0) // заполняем нулями |
− | pred = | + | pred = (n, -1) // -1 - признак отсутствия предпоследнего элемента, что указывает на то, что данный элемент является первым в подпоследовательности |
a[1] = 1 | a[1] = 1 | ||
For i = 2 to n | For i = 2 to n | ||
Строка 23: | Строка 23: | ||
Для вывода самой подпоследовательности достаточной пройти по массиву pred, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | Для вывода самой подпоследовательности достаточной пройти по массиву pred, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | ||
− | ==== Пример алгоритма, работающего за время <tex> O(n | + | ==== Пример алгоритма, работающего за время <tex> O(n\cdot\log n) </tex> ==== |
− | Для строки ''x'' будем по-прежнему хранить массивы <tex>a</tex> и <tex>pred</tex> длины | + | Для строки ''x'' будем по-прежнему хранить массивы <tex>a</tex> (a уже длины n + 1) и <tex>pred</tex>, добавим к ним так же массив no из n + 1 элементов так, что в no[i] хранится номер последнего элемента в возрастающей подпоследовательности длины i. Теперь <tex> a[i] </tex> содержит наименьший по величине элемент, на который может оканчиваться возрастающая подпоследовательность длины <tex>i</tex>, среди всех <tex>x[j]</tex>, где <tex>1 \leqslant j \leqslant i-1 </tex>, если мы на шаге <tex>i</tex>. В свою очередь, pred[i] хранит индекс предшевствующего символа для наибольшей возрастающей подпоследовательности, оканчивающейся в i-й позиции. Заметим, что <tex> a[1] < a[2] < a[3] < \dots < a[n] </tex>. Пусть мы находимся на i-ом шаге, тогда нам надо найти такой номер k <tex> a[k] \leqslant x[i] < a[k+1] </tex> (если положить при начальной реализации<tex> a[1] = -\inf a[2] = a[3] = \dots = a[n] = \inf </tex>, то такое k всегда найдется).Причем если в условии не строгое возрастание, то массив a ''не убывает'', и надо искать наибольшее k из возможных. После этого полагаем <tex> a[k + 1] = x[i] </tex>. В силу упорядоченности массива a, мы можем искать k бинарным поиском (при не строгом возрастании необходимо пользоваться функцией upper_bound(1, n, a[i])). Подсчитаем время: мы n раз выпоняем бинарный поиск, что требует <tex> O(\log n) </tex> времени. Итого: <tex> O(n\cdot\log n) </tex>. |
<code> | <code> | ||
− | a[ | + | a = (n + 1, inf) |
− | + | pred = (n, -1) | |
+ | a[0] = -inf | ||
+ | no[0] = -1 | ||
For i = 1 to n | For i = 1 to n | ||
− | j = | + | j = binary_search(0, n, x[i]) // бинарный поиск j < i, удовлетворяющего x[a[j]] < x[i] и x[i] < x[a[j + 1]] |
− | + | d[j + 1] = a[i] | |
− | + | p[i] = no[j] | |
− | + | no[j + 1] = i; | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</code> | </code> |
Версия 21:06, 27 ноября 2010
Определение: |
Наибольшая возрастающая подпоследовательность (НВП) (англ. Longest increasing subsequence - LIS) строки | длины - это последовательность символов строки таких, что и - наибольшее из возможных.
Задача заключается в том, чтобы отыскать это наибольшее
и саму подпоследовательность. Известно несколько алгоритмов решения этой задачи.Пример алгоритма, работающего за время
Строим таблицу
lis = 0 // длина НВП a = (n, 0) // заполняем нулями pred = (n, -1) // -1 - признак отсутствия предпоследнего элемента, что указывает на то, что данный элемент является первым в подпоследовательности a[1] = 1 For i = 2 to n For j = 1 to i - 1 If (x[i] > x[j]) and (a[j] + 1 > a[i]) // нашли более оптимальную подпоследовательность a[i] = a[j]+1 pred[i] = j lis = max(lis, a[i])
Для вывода самой подпоследовательности достаточной пройти по массиву pred, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента.
Пример алгоритма, работающего за время
Для строки x будем по-прежнему хранить массивы
(a уже длины n + 1) и , добавим к ним так же массив no из n + 1 элементов так, что в no[i] хранится номер последнего элемента в возрастающей подпоследовательности длины i. Теперь содержит наименьший по величине элемент, на который может оканчиваться возрастающая подпоследовательность длины , среди всех , где , если мы на шаге . В свою очередь, pred[i] хранит индекс предшевствующего символа для наибольшей возрастающей подпоследовательности, оканчивающейся в i-й позиции. Заметим, что . Пусть мы находимся на i-ом шаге, тогда нам надо найти такой номер k (если положить при начальной реализации , то такое k всегда найдется).Причем если в условии не строгое возрастание, то массив a не убывает, и надо искать наибольшее k из возможных. После этого полагаем . В силу упорядоченности массива a, мы можем искать k бинарным поиском (при не строгом возрастании необходимо пользоваться функцией upper_bound(1, n, a[i])). Подсчитаем время: мы n раз выпоняем бинарный поиск, что требует времени. Итого: .
a = (n + 1, inf) pred = (n, -1) a[0] = -inf no[0] = -1 For i = 1 to n j = binary_search(0, n, x[i]) // бинарный поиск j < i, удовлетворяющего x[a[j]] < x[i] и x[i] < x[a[j + 1]] d[j + 1] = a[i] p[i] = no[j] no[j + 1] = i;