Лемма о белых путях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Лемма |statement = Не существует такого момента выполнения [[Обход в глубину, цвета вершин|поис…»)
(нет различий)

Версия 02:06, 28 ноября 2010

Лемма:
Не существует такого момента выполнения поиска в глубину, в который бы существовало ребро из черной вершины в белую.
Доказательство:
[math]\triangleright[/math]
Пусть в процессе выполнения процедуры [math]dfs[/math] нашлось ребро из черной вершины [math]v[/math] в белую вершину [math]u[/math]. Рассмотрим момент времени, когда мы запустили [math]dfs(v)[/math]. В этот момент вершина [math]v[/math] была перекрашена из белого в серый, а вершина [math]u[/math] - белая. Далее в ходе выполнения алгоритма будет запущен [math]dfs(u)[/math], поскольку обход в глубину обязан посетить все белые вершины, в которые есть ребро из [math]v[/math]. По алгоритму вершина [math]v[/math] будет покрашена в черный цвет тогда, когда завершится обход всех вершин, достижимых из нее по одному ребру, кроме тех, что были рассмотрены раньше нее. Таких образом, вершина [math]v[/math] может стать черной только тогда, когда [math]dfs[/math] выйдет из вершины [math]u[/math], и она будет покрашена в черный цвет. Получаем противоречие.
[math]\triangleleft[/math]


Следствие

Лемма о белых путях.

Лемма:
олололо
Доказательство:
[math]\triangleright[/math]
олололо
[math]\triangleleft[/math]