Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) |
Анна (обсуждение | вклад) (→Доказательство корректности) |
||
Строка 30: | Строка 30: | ||
Покажем, что в <tex>S^*</tex> работа <tex>k</tex> может быть заменена работой <tex>l</tex> без увеличения значения целевой функции. Рассмотрим два случая:<br> | Покажем, что в <tex>S^*</tex> работа <tex>k</tex> может быть заменена работой <tex>l</tex> без увеличения значения целевой функции. Рассмотрим два случая:<br> | ||
1. Пусть <tex>l < k</tex>.<br> | 1. Пусть <tex>l < k</tex>.<br> | ||
− | То, что <tex>k</tex> не принадлежит множеству <tex>S</tex>, значит, что либо на некотором шаге появилась опаздывающая работа <tex>j</tex>, которая заменила <tex>k</tex>, либо работа <tex>k</tex> опаздывала и <tex>w_k</tex> было меньше <tex>\min\limits_{i \in S}w_i</tex>, и поэтому она не была добавлена. В любом случае в это время работа <tex>l</tex> уже принадлежала <tex>S</tex>. Из этого следует, что <tex>w_k \leq w_l</tex>, во втором случае очевидно, почему, а в первом {{---}} потому что на этапе замены мы выбрали <tex>k</tex>, а не <tex>l</tex>. Следовательно, мы не ухудшим целевую функцию заменой <tex>k</tex> на <tex>l</tex>. | + | То, что <tex>k</tex> не принадлежит множеству <tex>S</tex>, значит, что либо на некотором шаге появилась опаздывающая работа <tex>j</tex>, которая заменила <tex>k</tex>, либо работа <tex>k</tex> опаздывала и <tex>w_k</tex> было меньше <tex>\min\limits_{i \in S}w_i</tex>, и поэтому она не была добавлена. В любом случае в это время работа <tex>l</tex> уже принадлежала <tex>S</tex>. Из этого следует, что <tex>w_k \leq w_l</tex>, во втором случае очевидно, почему, а в первом {{---}} потому что на этапе замены мы выбрали <tex>k</tex>, а не <tex>l</tex>. Следовательно, мы не ухудшим целевую функцию заменой <tex>k</tex> на <tex>l</tex>.<br> |
2. Пусть <tex>l > k</tex>.<br> | 2. Пусть <tex>l > k</tex>.<br> | ||
+ | Замена работы <tex>k</tex> в <tex>S^*</tex> на работу <tex>l</tex> не противоречит условию, что за все работы в этом множестве штраф налагаться не будет, так как <tex>k</tex> выполнялась в срок, а <tex>d_k \leq d_l</tex> и все работы выполняются одинаковое количество времени. Следовательно, <tex>l</tex> так же будет выполнена в срок. Осталось доказать, что <tex>w_k \leq w_l</tex>. <br> | ||
+ | |||
}} | }} |
Версия 19:22, 5 мая 2016
Задача: |
Дано | одинаковых станков, на которых нужно выполнить работ. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания — ожидается, что до этого времени она будет закончена, и штраф , который нужно будет выплатить в случае, если работа была закончена после . Необходимо минимизировать суммарный штраф, который придется выплатить.
Описание алгоритма
Оптимальное расписание для этой задачи будем задавать множеством работ
Чтобы построить множество , будем добавлять работы в порядке неуменьшения их времен окончания, и как только некоторая работа опаздывает, удалим из работу с минимальным значением и поставим на ее место.
Пусть есть работы с временами окончания . Будем называть простоем временной интервал, в который на машине ничего не обрабатывается. Тогда следующий алгоритм вычислит оптимальное множество .
for to : if опаздывает, и все более ранние простои заполнены: найти if : заменить на в else: добавить в и поставить на место самого раннего простоя
Таким образом, работы, не попавшие в
, будут иметь минимальное значение .Доказательство корректности
Теорема: |
Вышеописанный алгоритм корректен и строит оптимальное множество работ . |
Доказательство: |
Пусть
Покажем, что в |